5yyff///i///[////////7

The Python
Quick Syntax

Reference

Gregory Walters

Apress’

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress®

vww allitebooks.conl

http://www.allitebooks.org

Contents at a Glance

About the Authorcccsimmmsmns e ————— xxi
About the Technical ReVIEWErcucssvsmsssssmsssssssssssssssssssnsssansns xxiii
Acknowledgments.........cccuunnsssnmmnmmmmmmmsssssssssnnnnnnssssssssssnssnnnsessssnns XXV
Introduction.........ccccsnimmn s ——————— XXvii
Chapter 1: Hello Python.........ccccvieeemmnnnsesnnnnssssssssmsssssssssssssssssssssnns 1
Chapter 2: Variablescccuseemmmnsssemnmmnsssssnmmmssssssnmsssssssssssssssssnssssnns 5
Chapter 3: Operatorscceemrmmssssnmmsssssnnmsssssssnssssssssnssssssnnnssssnnns 13
Chapter 4: Strings........ccevvnnemnmmmsssnnnmmssssnnmmsssssnmssssssnsessssssessnnn 25
Chapter 5: Conditional Statements..........cccusveemmmmnnnnnnnnnnnsnssnn. 43
Chapter 6: Data Structures.........ccccnmmnnmmmmmnsssssnmmssssssnmsssssssesnnnn 49
Chapter 7: KeyWordsccuseemsmssssnssssssssnssssssssssssssssssssssssssssssssssnns 67
Chapter 8: FUNCLIONSccccemmmisssmnnmmssssnnnmsssssssnssssssssnsssssssssssssnnns 85
Chapter 9: LIDraries......ccccuseemmmmsssnsnmmssssssnmssssssssssssssssssssssssnsssssnnns 93
Chapter 10: ClasSesS....uueerrmmmmmmmmssnssssssmsssssssssnnsssssssssssssssnnnnsnsssnss 107
1T 119
v

[vww allitebooks.cond

http://www.allitebooks.org

Introduction

One of the best things that Python offers is an extensive standard library that offers a wide
range of included features that range from network functionality, database handling,

and XML processing all the way to zip file processing. There are hundreds of additional
libraries that extend the abilities of Python.

The current versions of Python that are available at this writing are 2.7 and 3.2.5. The
reason for this is that version 3.x is NOT completely backward compatible to the earlier
versions, and with the wealth of existing code and libraries that are currently being used
on a daily basis, both versions are available. You can find these versions at www.python.org
for the Windows, Linux/Unix, and Mac OS X operating systems. If you are running Linux,
you can check your normal distribution, which will have a version of Python available. It
might already be installed on your system. You can do a web search for versions that are
available for other operating systems.

Although there are many free and for-pay IDEs (Integrated Development Editors)
available for Python, all code may be written in a standard text editor and run from the
command line in a standard terminal or command box. My personal preference is a free
IDE named Geany, which is available for both Linux and Windows.

The goal of this book is to provide (as the name suggests) a quick guide to the Python
language syntax. Sometimes, a programmer is called on to know multiple languages and
the differences from one programming language to another can be just different enough
to cause issues. This guide is designed to be kept not on the bookshelf but on the desk, to
provide a way to quickly get answers.

You'll find chapters on data structures, keywords, strings, variables, and more. There
is even a chapter on some of the more useful standard libraries that come with almost
every distribution of Python.

Conventions used in this book

Almost all code presented here will be simple examples showing how to use a particular
command or function and can be run in the interpreter shell. The code will look like the
following, with the output or response from the shell in bold.

print('This is a test')
This is a test

If you see a line of code that starts with “>>>") that shows the prompt from the
interpreter shell. Do not insert that into your code, just the part after it. If you see a line
of code that starts with “ .] that shows that the shell recognizes this is a line that should
be indented. Again, do not insert the dots in your code. Just remember that you have to
indent that portion of the code.

xxvii

[vww allitebooks.cond

www.python.org
http://www.allitebooks.org

CHAPTER 1

Hello Python

Let’s review a simple Python program that will explain the use of the Python Interactive
Shell along with a few tips.

Python’s Interactive Shell

Once you have Python installed on your system, you can use the Interactive Shell to
try simple lines of code, debug some problematic code, and even use it as a simple
calculator.

In a terminal (Linux) or Command Prompt (Windows), simply type:

python
If you are running on Linux, you will see something like this:

Python 2.7.3 (default, Apr 10 2013, 05:09:49)

[GCC 4.7.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>>

Or if you are running on Windows, you would see something like this:

Python 2.7.1 (r271:86832, Nov 27 2010, 18:30:46) [MSC v.1500 32 bit
(Intel)] on
win32
Type "help", "copyright", "credits" or "license" for more information.
>>>

Asyou can see, there is not a lot of difference in the two.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 © HELLO PYTHON

Commands

Once you see the three “right arrow” symbols (>>>), you are at the user prompt. From
here you can enter commands:

>>> 3423

26

>>> print "This is a test of the interactive mode"
This is a test of the interactive mode

>»>a =3

»>b =14

>>> print a * b
12

>>> print a + b
7

>>> exit()

Multiline Statements

You can also enter multiline statements that are indented as in a for loop or an if
statement (which will be discussed in a later chapter). For example:

>>> for i in range(0,3):
print i

[y

When you are in multiline statements, the interpreter will automatically recognize
this (by the “:” colon) and prompt you with three dots instead of three right arrows. Be
sure to use spaces to indent your next line(s). To end the multiline mode, simply press
“enter” on a blank line. Your multiline statement will then be evaluated (if possible) and
the result will be displayed.

To exit the interactive shell, type “exit()” as shown earlier.

The Code

I know that you are “chomping at the bit” to write your first program, so we'll get started
with a very simple example. Assuming that you have Python installed on your machine,
fire up your favorite text editor to enter the following lines:

print 'Hello. I am a Python program.'
name = raw_input("What is your name? ")
print 'Hello there ' + name + '!'

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 © HELLO PYTHON

Save this as ‘hello.py’ whereever you like. I'd suggest you create a subfolder of your
home directory to store all your test code, like this:

C:\
| -Development
|-Tests

Now in a command or terminal window, change to the folder you saved the above
file in and type:

python hello.py
You should see something like this:

greg@earth:~$ python hello.py

Hello. I am a Python program.

What is your name? Greg (The program pauses here for you to enter your name)
Hello there Greg!

or under Windows:

C:\> python hello.py

Hello. I am a Python program.

What is your name? Greg (The program pauses here for you to enter your name)
Hello there Greg!

Decoding the Code

Let’s look at each line of the code.
print 'Hello. I am a Python program.'

The print command will output into the terminal or command prompt box whatever
follows.

In this case, we are telling Python to display “Hello. I am a Python program.” Notice
that what we want displayed is in single quotes in our code. You can use either single
or double quotes to enclose the string. However, when you want to show single quotes
within a display string, you should use double quotes to enclose the entire string. If you
want to display double quotes within a display string, you should use single quotes to
enclose the string. We'll discuss this later in Chapter 4.

name = raw_input("What is your name? ")

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 1 © HELLO PYTHON

Here we are doing two things. First, we are using the raw_input command to tell
Python to display a prompt to the user (the “What is your name? “ part) and then wait
for the user to input something, even if it is a simple “enter” key to enter a blank input.
It is important for you to include the space after the question mark and before the ending
quote. This gives a cleaner look for the program, in that the ultimate user has an idea that
there is something they need to do. The second thing we are doing is assigning the user’s
response to a variable called ‘name’ We will talk more about variables in Chapter 2. For
now, think of a variable as a simple box that holds something. In this case, it would hold
the name of the user:

print 'Hello there ' + name + '!'

Again, we are telling Python to display a line in the terminal window, but this time
we are creating the line out of three strings of text. This is called concatenation. The plus
symbol ('+') is used to join the parts of the line together. So we have “Hello there” and the
user name and a “!”

Comments

Comments allow us to put notes within our code. When the interpreter encounters
a comment, it ignores the rest of the line. It is considered good practice to comment your
code well to explain the thought process behind it. If you ever have to come back to your
code after a week or so, the comments will help you remember what you were doing.
It also allows other people to understand your code.

To create a comment line, simply start the comment with the hash symbol (#).
The following lines are example of commented lines:

This is a full line comment.
aVariable = 23 # this is an in-line comment.

It is important to remember that anything following the hash symbol is considered a
comment. You can also use triple double quotes (""") to enclose multiline comments.

This is an example of a multiline comment.
Everything between the sets of triple double quotes is considered a comment.

Comments also allow us to tell the interpreter to ignore lines of code that might be
giving us problems or a block of code that is incomplete.

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 2

Variables

Variables are “slots” that we can store data in. Some languages, such as C#, Visual Basic,

and others, require you to declare your variables before you use them along with the type of
variable it is, for example, Integer or String. Python doesn’t require you to do this. As I said
in the Introduction, Python uses a scheme called “Duck Typing.” This means that you don’t
have to declare variables before they are used and that you don’t have to specify what a type
variable is or will be. There is a mix of opinions on this as to whether it is a good or bad thing.

Case Sensitivity

Variables names must start with either a letter (upper- or lowercase) or an underscore
character. They may not begin with a number, space, or sign character.

Everything in Python is case-sensitive: not only the keywords and functions that
Python provides, but for any variables you happen to create. For example:

“Print” is not the same as “print.”

Because of this, you could use the word “Print” as a variable, but not the word “print””
That having been said, it isn’t a good idea to use “re-cased” function names or keywords.

Proper Variable Naming

A variable name should explain what the variable is used for. If you use variable names
such as “x” or “q,” it doesn't tell you anything about what the variable does or is for. This
is termed “self-documenting.” A long time ago, it was “normal” practice to use single
character variable names wherever possible. Many times it was to save memory. Although
there is nothing that says you can not use single letters or some obscure variable names
(and it really does save time and finger power when typing a large amount of code), it will
make it very difficult for you or someone else to read and maintain your code after the fact.
Because spaces are not allowed in variable names, many people use what is
called Camel Casing to make the variable names easier to understand. Camel Casing
(sometimes called Pascal Casing) says that you put the first letter of each word in
uppercase and all the rest in lowercase:

ThisIsAnExampleOfCamelCasingForVariables.
CounterVariable
ReturnedValue

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 2 ' VARIABLES

Another alternative is to use underscores in place of spaces:

this_is _an_example of a long variable name
counter_variable
returned_value

Either way is “acceptable.” It mainly depends on what you want to use or what your
work uses as a standard. As I stated earlier, it is important for you to use variable names
that are “self-documenting.”

Assignment

To assign a value to a variable, use the equal (“=") sign:

AnInteger = 3

AFloatValue = 3.14159

AString = “The time has come for all good men..”
Thelist = [1,2,3,4,5]

You can also make multiple assignments of a single value on one line. In the
following snippet, the variable ‘a’ is assigned to the value 1. Then the variables ‘b’ and ‘c’
are assigned to be equal to the variable ‘a:’

>»>a=1

>»>b=c=a

>>> print('a=%d, b=%d, c=%d') % (a,b,c)
a=1, b=1, c=1

Data Types

Python has five “standard” data types: numeric, string, list, tuple, and dictionary.

Numeric

Numeric data types are for storing numeric values. In Python 2.x, there are four types

of numeric data, Integers (signed), Long (signed), Float (floating point numbers), and
complex numbers. Booleans (0 or 1) are subtypes of integer under version 2.x. The actual
range of values that can be stored in any different numeric type will vary from system to
system. On my Windows machine, the maximum value for an integer is 2,147,483,647.
You can find the actual maximum value for an integer on your system by using the
following code in a Python Interactive Shell session:

import sys
print sys.maxint
2147483647 (My system)

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 2 " VARIABLES

Hexadecimal, octal, and binary numbers also fall under the Numeric data type
umbrella.

Hexadecimal numbers are base 16. They range from 0 to 9 and A to E. Octal numbers
are base 8 numbers. They range from 0 to 7. Binary numbers are base 2 numbers and only
include 0 and 1. Examples of each follow:

Hexadecimal - 1B = 27 (decimal)
Octal - 033 = 27 (decimal)
Binary - 00011011 = 27 (decimal)

String

The string data type is a series of characters that is delimited by quotation marks (either
single or double). Strings will be discussed seperately in Chapter 4. An example of strings
would include:

'This is a string'
"3.14159"

Lists, Tuples, and Dictionaries will be discussed in Chapter 6, but for now here is a
quick description.
List
Lists are a way to create multiple values that are referenced by a single variable name with
a zero-based index, similar to arrays in other programming languages. Lists use square
brackets (“[]"”) to define them. An example would be:

ColorList = ['Red','Orange’, 'Yellow', 'Green','Blue', 'Purple']

ColorList[2] would be the value ‘Yellow!

Tuple

Tuples are a number of values seperated by commas. The data within a tuple may consist
of numbers, strings, and even other objects:

t = 3,42, 'The time has come for all good men'

Like lists, tuples are referenced by a zero-based index. t[1] would be the value “42”.

CHAPTER 2 ' VARIABLES

Dictionary

A dictionary is like a mini database in memory. Each item in a dictionary has two parts:
akey and a value. Each item is referenced (usually) by its key. A dictionary uses curly
brackets to define them:

dict = {"Fname":"Jack","LName":"Sprat"}

In this example, there are two sets of data in the ‘dict’ dictionary. ‘Fname’ is the key
for the value ‘Jack’ and ‘LName’ is the key for the value ‘Sprat!

Data Type Conversion

There are several built-in functions to perform conversion from one data type to another.

int(s,[base])

Returns an integer from the string s. If base is provided, specifies what base to use for the
conversion. Ifthe string is not that of a value (binary, hex, octal, integer, long, etc.), you will
receive an error.

>>> int('1001',2)
9

>>> int('FA',16)
250

long(s,[base])

Returns a long integer from the string s. If base is provided, it specifies what base to use
for the conversion. If the string is not a valid number, it will return an error.

>>> long(30219568420)
30219568420L

float(s)

Returns a floating point number from the string s. If the string is not a valid number, this
will return an error.

>> d = '3.14159"
>>> e = float(d)
>>> e

3.14159

CHAPTER 2 " VARIABLES

complex(real [,imaginary])

Creates a complex number.

>>> complex(3.14159)
(3.14159+07)

>>> complex(-123.45)
(-123.45+0j)

»»> complex(32,43)
(32+433)

str(x)

Returns a string based on the numeric value x. If (x) is not a valid number, this function
will return an error.

>>> str(3.14159)
'3.14159"

tuple(s)

Returns a tuple based on sequence s. The sequence should be something like a string or
a list.

>>> tuple([3,5,7])
(3, 5, 7)

»»> tuple('abed")
(lal, lbl’ Icl, Idl)

list(s)

Returns a list based on sequence s. The sequence should be something like a string or a
tuple.

>>> 1list((1,2,3))
[1, 2, 3]

»»» list('abcd')
[|a|, Ibl, IC', Idl]

CHAPTER 2 © VARIABLES
set(l)
Returns a set based on sequence 1. Sequence I must be a list.

>>> set([7,3,11])
set([11, 3, 7])

dict(s) (s must be sequence of (key,value) tuples)

Returns a dictionary from a list of tuples.

>>> dict([('fname','fred'),('value',1)])
{'value': 1, 'fname': 'fred'}

frozenset(s)

Returns a frozenset created from set s.

>»> s = set([7,3,1])
>>> frozenset(s)
frozenset([1, 3, 7])

chr(x)

Returns a character created from integer x in the range of 0 to 255.

>>> chr(65)
lA'

unichr(x)

Returns a unicode character created from integer x in the range (on most machines) of 0
to 0x10000.

>>> unichr(1000)
u'\uo3e8'’

ord(c)

Returns the ascii value of character c.

>>> ord('M")
77

10

hex(x)

Returns a hexadecimal string created from integer x.

>>> hex(23)
‘ox17'

oct(x)

Returns an octal string created from integer x.

>>> oct(32)
lo4°|

CHAPTER 2 " VARIABLES

11

CHAPTER 3

Operators)

Python supports several operators. Here, we review some of the key ones.

Arithmetic Operators

We use the arithmetic operators to do simple math on two variables or literals. Be sure to
only try to use arithmetic operators on like types. For example, if you try to add a string
value to a integer (3 + “ is a number”) you will get an error.

+ Addition

Adds the left value to the right:

>>> lvariable = 5

>>> sum = lvariable + 3
>>> sum

8

— Subtraction

Subtracts the right value from left:

>>> lvariable = 5

>>> difference = lvariable - 3
>>> difference

2

* Multiplication
Multiplies left value by right:
>>> lvariable = 5

>>> product = lvariable * 3

>>> product
15

13

CHAPTER 3 © OPERATORS

/ Division
Divides left value by right. Integer divided by integer returns an integer. Right-side value
can not be zero:

>>> quotient = 5 / 3 # integer/integer

>>> quotient

1

>>> quotient = 5.2 / 3.1 # float/float

>>> quotient

1.6774193548387097

>>> quotient = 3.14159 / 7 # float/integer
>>> quotient

0.44879857142857144

>>> quotient = 7 / 3.14159 # integer/float
>>> quotient

2.2281710853421357

>>> quotient =5/ 0

Traceback (most recent call last):

File "¢stdin»", line 1, in <module»
ZeroDivisionExror: integer division or modulo by zero

% Modulus

Divides left value by right and returns the remainder:

>>> remainder = 5 % 3
>>> remainder

>>> remainder = 3 % 5
>>> remainder

** Exponent

Left value raised to the power of the right:

>>> exp = 2 ** 3
>>> exp

8

>>> exp = 2.1 *¥* 3
>>> exp
9.261000000000001

14

CHAPTER 3 © OPERATORS

// Floor Division

Division, but with the decimal values rounded down to the nearest integer:

>>> quotient = 5.2 // 3.1
>>> quotient
1.0

Comparison Operators

When we want to compare two values to each other, as in equality (a is equal to b), we use
comparison operators. Unlike many other programming languages Python comparison
operators may differ.

In the following examples, assume the following:

a=>5
b=3

Checks to see if left variable is equal to right. Please note that when using floating point
numbers (floats) that there will be times that the calculations do not act as you might
expect due to the way floating point numbers are stored in Python. When you need
precise calculations, use the decimal library:

>>> print(a == b)

False

>>> test = 1.1+2.2

>>> test == 3.3

False # test is actually 3.3000000000000003

== (Strings)

Comparison of strings, lists, and other objects is very similar to that of numbers:

Str1 = "This is a test"
Str2 = "This was a test"

Str1 == Str2
False

Lst1 = [1,2,3,4]
Lst2 = Lst1

Lst2 == Lst1
True

15

CHAPTER 3 © OPERATORS

1=
Checks to see if left variable is NOT equal to right (3.x and 2.x):

Python 2.x

>>> print(a != b)
True

Python 3.x

>>> print(a != b)
True

<>

Checks to see if left variable is NOT equal to right (2.x only):

Python 2.x

>>> print(a <> b)

True

Python 3.x (use !=)

>>> print(a <> b)

File "<stdin»", line 1
print(a <> b)

SyntaxError: invalid syntax

>
Checks to see if left variable is greater than right:
>>> print(a > b)

True

<
Checks to see if left variable is less than right:
>>> print(a < b)

False

>=

Checks to see if left variable is greater than or equal to right:

>>> print(a >= b)
True

16

CHAPTER 3 © OPERATORS

<=
Checks to see if left variable is less than or equal to right:

>>> print(a <= b)
False

Assignment Operators

Assignment operators, as we have seen eatrlier, assigns and/or modifies a value to a
variable.

Assignment operator. Assigns the value on right to variable on left:

>»>a =3
>>> a
3

+=

Add and assign or increment operator. Adds value on right to left variable:
>>> a =3

>> a += 3

>>> a

6

Subtract and assign or decrement operator. Subtracts value on right from left variable:

Multiply and assign. Multiplies right value to left value:

>»>a=3
>»> a *=2
>>> a

6

17

CHAPTER 3 © OPERATORS

/=

Divide and assign. Divides right value from left value:

>»>a =3
>»>a /= 2.0
>>> a

1.5

%=

Modulus and assign:

>»>a=3
>>> a %= 2
>»> a

1

*k_

Exponent and assign:

>»>a=3
>>> a ¥*= 2
>>> a

9

//=

Floor Division and assign:

>»> a =75.0
>>>a //= 3.0
>»> a

1.0

Logical Operators

Python provides three operators for logical operations: and, or and not. These operators
allow us to compare two values without having to rely on normal equality considerations.
You could think of logical operators as sort of a high level binary evaluation.

18

CHAPTER 3 © OPERATORS

and

Logical AND - if both values are True (or in many cases, nonzero), then returns a true
value:

a=20

b=28

if (a and b):
print 'true'

else:

print 'false'

false

or

Logical OR - if either value is True, returns a true value:

a=0
b=28
if (a or b):
print 'true'
else:
print 'false'
true

not

Logical NOT - reverses the operator. True becomes False and False becomes True:

a=20
b=28
if not(a and b):
print 'true'
else:
print 'false’
true

Membership and Identity Operators

We use membership operators to test to see if a particular value is a member of (or is
included in) a particular object like a list or dictionary. The identity operators check to
see if the two objects are the same.

19

CHAPTER 3 © OPERATORS

In

Returns True ifxisiny:

>>> a = "This is the time"
>>> 'is' in a

True

>>> 1st = [1,2,4,7,9]

>>> 2 in Ist

True

>>> 8 in 1st

False

notin
Returns True if xis NOT in y:
>>> a = "This is the time"

>>> 'frog' not in a
True

is

Returns True if variables on each side refers to the same object:

>»> ¢ = list(['a",'b"','c"])
»>d=rc

>»> cisd

True

is not

Returns False if variables on each side refers to the same object:

>>> ¢ = list(['a','b',"'c"'])
»>d=c

>>> ¢ is not d

False

Bitwise Operators

These operators perform bit by bit operations on binary values.

Binary numbers consist of 1s and 0s called bits. In a 4-bit binary number, the value
will range from 0 to 15. In an 8-bit number, the value will range from 0 to 255. Each bit
position has a value starting from right to left. A 1 in any position gets counted to make a

20

CHAPTER 3 © OPERATORS

standard decimal number. For a 4-bit number, the positions are 1,2,4,8. It is easy to see
that the value for each position is doubled.

0000 O
0001 1
0010 2
0011 3
0100 4

In the following examples, assume the following:

00011000 (24)
00001000 (8)

(o2 V)
non

&

Binary AND
Compares bit by bit the two values; if the bits are both 1 in any given position, then
the result is 1 for that bit position:

>»>adb

8 (00001000)
00011000
00001000
Equals
00001000 (8)

Binary OR
Compares bit by bit the two values and if either of the bits are 1 in any given position,
then the result is 1 for that bit position:

>>» a | b

24 (00011000)
00011000
00001000
Equals
00011000 (24)

21

CHAPTER 3 © OPERATORS

AN

Binary XOR.
Compares bit by bit the two values and if either of the bits are 1 but not both bits,
then the result is 1 for that bit position:

>»>a b
16 (00010000)
00011000
00001000
Equals
00010000 (16)

~

Binary Ones complement.

Ones complement is defined as the value that is obtained by inverting all the bits
in the number. This then behaves like a negative value of the original value in some
arithmetic operations:

a = 24 (00011000)
>>> ~a

-25

(11100111)

<<

Binary Shift Left.
Shifts all bits to the left. Zeros are inserted at the right side:

>>> a << 2
96 (00011000 Shift Left 2 = 01100000 = 64 + 32 = 96)

>>

Binary Shift Right.
Shifts all bits to the right by x positions. Zeros are inserted at the left side:

>>>a > 2
6 (00011000 Shift Right 2 = 00000110 = 2 + 4 = 6)

22

CHAPTER 3 © OPERATORS

Precedence of Operators

Precedence of operators is the order that the various operators are processed in
calculations.

For example: If the calculation is 3 + 5 * 4 + 6, the answer would be 29. Multiplication
takes precidence over addition, so the formula breaks down to 20 + 9 (5 *4) + (3 + 6).

The precedence of evaluation is always overridden by the use of parentheses:

(3+5)*(4+6) =112
3+5%4+10 = 33 (3 + 20 (5*4) + 10)

The following list shows precedence of the operators from lowest to highest:
e Lambda (Discussed in Chapter 7)
e If- else (Discussed in Chapter 5)

e or
e and
® notx

° in, not in, is, is not

® +X,-X,~X

° *%

e X[index], x[index:index], x(arguments...), x.attribute
e (expressions...), [expressions...], {key:value...},expressions...

e 0

23

CHAPTER 4

Strings

String objects exist in practically every programming language. A string is simply a series
of characters assigned to a variable. Python strings are immutable, which means that
once created, they can not be changed. String assignments look like this:

s = 'Abcdefg’

Appending to Srings

Although Python strings are immutable, we can perform many operations on them,
including appending other information to the string.

>>> a = "This is a test"

>>> a = a + " of strings"”
>> a
'This is a test of strings'

In this case, a copy of the string is made, the second string is appended to the copy,
then the original is deleted and the new string is renamed to the old name.

String Functions

There are a number of built-in functions that are available for strings. Note that most of
these functions also exist for other types of objects.

len()

Returns the length of the string.
>>> a = "The time has come"

>>> len(a)
17

25

CHAPTER 4 * STRINGS

min()

Returns the minimum (lowest ascii value) character within the string.

>>> a = "The time has come"
>>> min(a)
" L]

max()
Returns the maximum (highest ascii value) character within the string.
>>> a = "The time has come"

>>> max(a)
ltl

sl in s2

Returns True if s1 is in string.

>>> a = "The time has come"
>>> "has" in a

True
>>> "not" in a
False
sl notin s2

>>> a = "The time has come"
>>> "not" not in a
True

sl +82

Concatenates s2 to s1.

>>> a = "The time has come"
>>> b =" for all good men"
>»>c=a+b

> C

'The time has come for all good men'

26

CHAPTER 4 * STRINGS

s[x]

Returns the single character at position x within the string (zero based). Also known as
the slice function. To get the slice starting at position x to the end of the string, use s[x:].

> C

'The time has come for all good men'
>>> c[7]

Iel

>>> c[7:]

'e has come for all good men'

s[x1:x2]

Returns a slice of the string starting at x1 and going to x2 (zero based). X2 should be
considered starting point + length of string to be returned.

If we want to get 8 characters from the string “The time has come for all good men”
starting with the word “time,” we would use c[4:12], as 4 is the zero-based fourth
character in the string and we want 8 characters, which is position 12. This can be
confusing to beginning users.

> C

'The time has come for all good men'

>>> c[4:12] # Want 8 characters (4 + 8 = 12)
'time has'

s[x1:x2:x3]

Similar to s[x1:x2] but with an additional parameter of number of characters to step.
You can also use a negative number as the step parameter. A -1 would reverse the string
starting from the last character. A -2 would give every other character starting from

the end.

> C
'The time has come for all good men'
>>> c[4:12:2]

'tm a'

>>> c[::-1]

'nem doog 1lla rof emoc sah emit ehT'
>>> c[::-2]

‘nmdo 1 o mcshei h'

27

CHAPTER 4 * STRINGS

String Methods

Methods differ from functions in that methods pertain to a specific object. For example,
the length of a string uses the len() function. To get the number of times that the letter
‘t’ occurs in the variable strl, which is the string “This is the time,” we would use
stri.count('t").

str.capitalize()

Returns a string where the first character of the string is set to uppercase and the rest is
lowercase.

>>> d = "this is a test"
>>> d.capitalize()
'This is a test'

str.center(width[,fillchar])

Returns a string where the original string is center justified filled with fillchar to the width
of width. The default fill character is a space. If original string length is longer or equal
width, the original string is returned. This is similar to ljust() and rjust().

>>> ¢ = "A Test"
>>> c.center(10)

' A Test '

>>> c.center(10,"*")
"HEA Test**!

str.count(sub/[,start[,end]])

Returns the number of instances of sub. Optional start and end parameters limit the
search within the string.

>>> s = "This is the time"
>>> s.count("t")

2

>>> s.count("T")

1

str.decode([encoding|,errors]])

Returns a decoded strinng using the encoding codec. Usually used for Unicode strings.
Possible parameters for the errors parameter are ‘ignore, ‘replace, ‘xmlcharrefreplace,
‘backslashreplace, ‘strict’ and others registered in codecs.register_error(). Defaults to
‘strict!

28

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 4 * STRINGS

Python 2.x:

>>> s = "This is the time"

>>> d = s.encode('UTF-8',errors="strict")

>>> d

'This is the time'

>>> d.decode('UTF-8',errors="strict")

u'This is the time' # the leading 'u' denotes unicode.

Python 3.x:
>>> s = "This is the time"
>>> d = s.encode('UTF-8',errors="strict")
>>> d

b'This is the time' # the leading 'b' denotes a byte array.
>>> d.decode('UTF-8',errors="strict")
'This is the time'

str.encode([encoding|,errors]])

Returns an encoded string using the encoding codec. Usually used for Unicode strings.

>>> d = s.encode('UTF-8',errors="strict")
>>> d
'This is the time'

str.endswith(suffix[,start[,end]])

Returns True if string ends with suffix. Optional start and end limits the search within the
string. Suffix can be a tuple of suffixes to search for.

> s
'This is the time'

>>> s.endswith('time")
True

str.expandtabs([tabsize])

Returns a copy of the string with all tabs replaced by one or more space characters.
Default tab size is 8. In the following example, the “\t” character equates to a tab
character.

>>> t = "Ttemi\tItem2\tItem3\tItemq"
>»> t

'Itemi\tItem2\tItem3\tItems'

>>> t.expandtabs(6)

'Item1 Item2 Item3 Itemsq'

29

CHAPTER 4 * STRINGS

str.find(substring[,start[,end]])

Returns the index of the first instance of substring is located within the string. Returns -1
if sub is not found. Index is zero-based. The start and end parameters allow you to narrow
the find.

>>> b = "This is the time of the party"”
>>> b.find("the")

8

>>> b.find("the",11)

20

str.format(*args,**kwargs)

Returns a string that is formatted using a formatting operation. This is a variable
substitution function. Replaces the % formatting operation. See the section on formatting
later in this chapter. The *args and **kwargs parameters are there when an unknown set
of arguments may be provided and/or a keyword/value set needs to be passed.

>>> a = 3.14159

>>> b = "PI = {0}".format(a)
>»> b

'PI = 3.14159'

str.format_map(mapping) Python 3.x only

Similar to str.format, but the mapping parameter is used directly and not copied to a
dictionary. In the following example, there are two items that will be substituted in the
string, one {vocation} and the other {location}. We have created a class called Helper,
which expects a dictionary key/value pair. If the key/value pair is provided, then we get
that value. If not, the __missing _routine is called and the key is returned. Using the
format_map routine, each key in the format function definition is sent into the Helper
class. Because we are only passing the dictionary information for {vocation}, when it gets
to {location}, the Helper routine returns “location” which is used in the string.

>>> class Helper(dict):
def _missing (self,key):

.. return key
>>> a = "Fred is a {vocation} at
{location}'.format _map(Helper(vocation="'teacher"'))

>>> a
'Fred is a teacher at location'

str.index(substring|,start[,end]])

Works like find but raises ValueError error if substring is not found. Because this raises an
error if the substring is not found, it is considered a better option for flow control than the
find() method.

30

CHAPTER 4 * STRINGS

str.isalnum()

Returns True if all characters in string are alphanumeric.

>>> f = "This is the time" # includes white space, so false
>>> f.isalnum()

False

>>> e = "abcdef1234"

>>> e.isalnum()

True

str.isalpha()

Returns True if all characters in string are alphabetic.

>>> e = "abcdef1234" # includes numerics, so false
>>> e.isalpha()

False

>>> g = "abcdef"

>>> g.isalpha()

True

str.isdecimal() Python 3.x only

Returns True if all characters in the string are decimal characters. Works on Unicode
representations of decimal numbers.

e = 12.34
e.isdecimal()
False

e = "\uooB2"
e.isdecimal()
True

str.isdigit()

Returns True if all characters in string are digits.

>>> a
3.14159

>>> str(a).isdigit() # contains a decimal point, so false
False

>>> b = "12345"

>>> b.isdigit()

True

31

CHAPTER 4 * STRINGS

str.isidentifier() Python 3.x only

Returns True if the string is a valid identifier. Valid identifiers like the way we name
variables. An example of an invalid identifier would be a string that starts with a “%.”

>>»> a = "print"

>>> a.isidentifier()
True

>»>a="$"

>>> a.isidentifier()
False

str.islower()

Returns True if all characters in string are lowercase.

>>> a = "the time has come for'
>>> a.islower()
True

str.isprintable() Python 3.x only

Returns True if all characters in string are printable or if the string is empty.

str.isspace()

Returns True if all characters in string are only whitespace.

str.istitle()

Returns True if the entire string is a titlecased string (only first character of each word is
uppercase).

>>> a = 'The Time Has Come'
>>> a.istitle()

True

>>> b = '"The TIme Has Come'
>>> b.istitle()

False

32

CHAPTER 4 * STRINGS

str.isupper()

Returns True if entire string is uppercased string.

>>> ¢ = "ABCDEFGH"

>>> c.isupper()

True

>»> b

'The TIme Has Come’

>>> b[4].isupper() # Is the 5th character in 'b' uppercased?
True

str.join(iterable)

Returns a string that has each value in iterable concatinated into the string using a

separator. Many times, it might just be easier to concatenate the strings with the “+” sign.

> a =
>>> a.join(["a")"b")"C"])
'a,b,c’

non
)

str.ljust(width[,fillchar])

Returns a string where the original string is left justified padded with fillchar to the width
of width. If original string length is longer or equal width, the original string is returned.
Similar to center(), rjust().

>>> a = "The time"
>>> a.ljust(15,"*")
' The time******* '

str.lower()

Returns a copy of string with all characters converted to lowercase.
>> a
'The time'

>>> a.lower()
'the time'

33

CHAPTER 4 * STRINGS

str.Istrip([chars])

Returns a copy of string with leading [chars] removed. If [chars] is omitted, any leading
whitespace characters will be removed.

>>> a = " This is a test"
>>> a.lstrip()

'This is a test’

>>> a.lstrip(" This")

'a test'

str.maketrans(x[,y]]) Python 3.x only

Returns a translation table for the translate method. This table can be used by the
translate method (see later in this chapter). In the case of the example here, any of the
characters in the inalpha string will be changed, or translated, to the corresponding
character in the outalpha string. So a=1, b=2, c=3, and so on.

>>> inalpha = "abcde"

>>> outalpha = "12345"

>>> tex = "This is the time for all good men"
>>> trantab = str.maketrans(inalpha,outalpha)
>>> print(tex.translate(trantab))

This is th5 tim5 for 111 goo4 m5n

str.partition(sep)

Returns a 3-tuple that contains the part before the separator, the separator itself and
the part after the separator. If the separator is not found, the 3-tuple contains the string,
followed by two empty strings.

>>> b = "This is a song.mp3"
>>> b.partition(".")
('This is a song', '.', 'mp3')

str.replace(old,new[,count])

Returns a copy of the string with all occurences of old replaced by new. If the optional
count is provided, only the first count occurances are replaced. Notice in the sample that
the “is” in “This” is also replaced becoming “Thwas.”

>>> b = "This is a song.mp3"

>>> b.replace('is', 'was")
'Thwas was a song.mp3'

34

CHAPTER 4 * STRINGS

str.rfind(sub|,start[,end]])

Returns the index of the last instance of sub-substring within string. Returns -1 if sub is
not found. Index is zero-based.

>>> b = "This is the time of the party"
>>> b.rfind("the")
20

str.rindex(sub[,start[,end]])

Works like rfind but raises ValueError error if substring sub is not found.

str.rjust(width[fillchar])

Returns a string where the original string is right-justified padded with fillchar to the
width of width. If original string length is longer or equal width, the original string is
returned. Similar to center(), ljust().

>>> a = "The time"
>>> a.rjust(15,"*")
'*******The time'

str.rpartition(sep)
Like partition(), but returns the part of the string before the last occurrence of sep as the

first part of the 3-tuple.

>>> b = 'This is a song.mp3’
>>> b.rpartition(' ")
('This is a', ' ', 'song.mp3')

str.rsplit([sep[,maxsplit]])

Returns a list of tokens in the string using sep as a delimiter string. If maxsplit is provided,
the list will be the RIGHTMOST set. Similar to split().

>>> a = "This is the time"
>>> a.rsplit(" ",2)
['This is', "the', 'time']

35

CHAPTER 4 * STRINGS

str.rstrip([chars])

Returns a copy of the string with trailing characters [chars] removed. If [chars] is empty or
not provided, whitespace is removed.

>>> a = " This is a test "
>>> a.rstrip()
'This is a test’

str.split([sep[,maxsplit]])

Returns a list of words in the string using sep as a delimiter string. If maxsplit is provided,
the list will be the LEFTMOST set. Similar to rsplit().

>>> a = "This is the time"
>>> a.split()
['This', 'is', "the', 'time']

str.splitlines([keepends])

Returns a list of the lines in the string, breaking the string at line boundries. Linebreaks
are NOT included in the resulting list unless the [keepends] is given and True.

>>> t = "The time has come\r\nFor all good men"
>>> t.splitlines()

['The time has come', 'For all good men']

>>> t.splitlines(True)

['The time has come\r\n', 'For all good men']

str.startswith(prefix[,start[,end]])

Returns True if string starts with the prefix otherwise returns false. Using optional
start,end parameters will limit the search within that portion of the string. Similar to
endswith().

>>> a = "This is a test"
>>> a.startswith('This")
True

>>> a.startswith('This',4)
False

36

CHAPTER 4 * STRINGS

str.strip([chars])

Returns a copy of the string where all leading and trailing characters are removed. If
argument is blank, removes all whitespace characters. If argument is provided, all values
in the argument are removed.

>>> ¢ = "thedesignatedgeek.net"”
>>> c.strip('thenet")
'designatedgeek."’

str.swapcase()

Returns a copy of the string where the uppercase characters are converted to lowercase
and the lowercase converted to uppercase.

>>> a = "The Time Has Come"
>>> a.swapcase()
"tHE tIME hAS cOME'

str.title()

Returns a copy of the string where the first character of each word is uppercased. Words
with apostrophes may cause unexpected results.

>>> a = "Fred said they're mine."
>>> a.title()
"Fred Said They'Re Mine."

str.translate(table[,deletechars]) Python 2.x

Returns a string that have all characters in the translate table replaced. Use the maketrans
method from the string library to create the translation table. The optional deletechars
parameter will remove any characters in the parameter string from the return string. To
just delete certain characters, pass None for the table parameter.

>>> from string import maketrans # Import the maketrans function from the
string library.

>>> intable = 'aeiou’

>>> outtable = '12345'

>>> trantable = maketrans(intable,outtable)

>>> a = "The time has come"

>>> a.translate(trantable)

'Th2 t3m2 his cqm2'

>>> a.translate(None, 'aeiou")

'Th tm hs cm’

37

CHAPTER 4 * STRINGS

str.translate(table) Python 3.x

Very similar to the Python 2.x version of .translate() with the following exceptions.
There is no deletechars optional parameter.

Maketrans is a method that does not need to be imported from
the string library.

str.upper()

Returns a copy of the string with all characters converted to uppercase.

>>> a = "The time has come"
>>> a.upper()
'"THE TIME HAS COME'

str.zfill(width)

Returns a copy of a numeric string that is left filled with zeros to the string length of width
(length). If the length of the string is less than or equal to width, the original string is
returned.

>>> b = "3.1415"

>>> b.zfill(10)

'00003.1415'

>>> b.zfill(5) # the width of b (length) is 6
'3.1415'

Print Statement

Python 2.x allows you to use the following format when using the print statement:

>>> print 'The time has come for all good men'
The time has come for all good men

However, Python 3.x will not accept this format. The Python 3.x format requires
parentheses around the string to print.

>>> print('The time has come for all good men')
The time has come for all good men

For ease of transition between the two versions, Python 2.7 has backported the
Python 3.x print format.

38

CHAPTER 4 * STRINGS

Python 2.x String Formatting

Formatting in Python 2.x uses a ‘string % value’ type field replacement formatting option.
This allows much more control over the final output than simply trying to concatinate
different strings and variables for the print or other output functions.

>>> print '%s uses this type of formatting system' % "Python 2.7"
Python 2.7 uses this type of formatting system

The ‘%s’ indicates that a string should be place at that position and the ‘%’ at the end
of the line provides the value that should be substituted. This could be a literal (as in the
case above) or a variable.

To provide an integer value, use the ‘%d’ field. You can also provide certain
formatting options along with the field designator. In the case here, the ‘%03d’ means to
format an integer to have a width of 3 and to zero fill on the left.

>>> print '%03d goodies in this bag' % 8
008 goodies in this bag

To provide more than one value to the substitution group, enclose the values in
parenthese.

>>> print '%d - %f Numbers' % (3,3.14159)
3 - 3.141590 Numbers

You can also use named variables in the output. In the following example, the
'%(frog)s' uses the value 'Python' from the key 'frog' in the provided dictionary.

>>> print '%(frog)s can print nicely %(num)d ways' %
{'frog':'Python', 'num':2}
Python can print nicely 2 ways

Table 4-1 lists the various flags that can be used to modify the way the substitution
will work.

Table 4-1. Substitution Flags for the print statement

Flag Meaning

The value conversion will use the alternate form (hex, octal, binary, etc).
See Table 4-2.

0 The conversion will be zero-padded for numeric values.
- The conversion value is left adjusted (overrides the "0" conversion).
Space—A blank should be left before a positive number.

+ A sign character (+ or —) will preceed the conversion (overrides the space conversion).

39

CHAPTER 4 © STRINGS
Table 4-2 shows the possible formatting of substitution keys.

Table 4-2. Substitution keys for the print statement

Conversion Meaning

‘d’ Signed integer decimal

9 Signed integer decimal

‘o’ Obsolete—identical to 'd'

‘o Signed octal value

x’ Signed hexadecimal—lowercase

X' Signed hexadecimal—uppercase

‘ Floating point decimal

‘e’ Floting point exponential—lowercase
‘E’ Floating point exponential —uppercase
‘g’ Floating point format—uses lowercase exponential format if exponent

is less than -4 or not less than precision, decimal format otherwise

‘G’ Floating point format—uses uppercase exponential format if exponent
is less than -4 or not less than precision, decimal format otherwise

c’ Single character

T String (converts valid Python object using repr())
‘s’ String (converts valid Python object using str())

‘%’ No argument is converted, results in a '%' character

Python 3.x String Formatting

Python 3.x uses a different formatting system, which is more powerful than the system
that Python 2.x uses. The print statement is now a function. Format strings use the curly
brackets "{}" to create the replacement fields. Anything that is not contained within the
brackets will be considered a literal and no converstion will be done on it. If you have
the need to include curly brackets as a literal, you can escape it by using '{{' and '}}.' This
formatting system has been backported to Python 2.6 and Python 2.7.

The basic format string is like this:

print('This is a value - {0}, as is this - {1}'.format(3,4))

40

CHAPTER 4 * STRINGS

Where the numbers 0 and 1 refer to the index in the value list, and will print out as
follows:

This is a value - 3, as is this - 4

It is not necessary to include the numbers inside the brackets. The values presented
in the parameter list will be substituded in order.

>>> print('Test {} of {}'.format(1,2))
Test 1 of 2

You can also use keys into a dictionary as the reference within the brackets, like in
Python 2.x.

Example of zero padded format for floating point values. {:[zero pad][width].
[precision]}

>>> a = "This is pi - {:06.2f}".format(3.14159)
>>> a
'This is pi - 003.14'

You can align text and specify width by using the following alignment flags:
:<x Left Align with a width of x

:>x Right Align with a width of x

:Ax Center Align with a width of x

>>> a
>>> a
'left '
>>> a
>>> a
' right'

>>> a = '{:”20}"'.format('center")
>>> a

' center

'{:<20}"' .format('left")

"{:>20}" . format('right")

You can also specify the fill character.

>>> a = '{:*>10}"'.format(3.14)

>>> a
VkERkE*Z 14"

Example of date and time formatting.

>>> import datetime

>>> d = datetime.datetime(2013,9,4,9,54,15)
>>> print('{:%m/%d/%y %H:%M:%S}" .format(d))
09/04/13 09:54:15

41

CHAPTER 4 * STRINGS

Thousands separator.
>>> a = 'big number {:,}'.format(72819183)

>> a
'big number 72,819,183'

Table 4-3. Format Specifiers using examples

Specifier Description

<20 Left Align to a width of 20.

>20 Right Align to a width of 20.

720 Center Align to a width of 20.

:06.2f Zero pad with precision for floating point number.

*>10 Asterisk pad right align to a width of 10.

=10 Padding is placed after the sign, if any but before digits. ONLY works for
numeric types.

+20 Force a sign before the number left padded to a width of 20.

=20 Force a sign before negative numbers only, left padded to a width of 20.

120 Force a leading space on positive numbers or “-“ on negative numbers,

left padded to a width of 20.
; Force thousands comma for numeric.
2% Expresses percentage (.975 results in 97.50%)
%M/%d/%Y Type specific usage. In this case datetime.

0:#x Formats an integer as a hex value 0xhh.
0:#0 Formats an integer as an octal value 0oxx.
0:#b Formats an integer as a binary value 0bxxxxxx.

42

CHAPTER 5

Conditional Statements /

Conditional statements are an important part of many programs. They allow logic control
of our programs. There are three main conditional statement types in Python. If / Elif / Else
conditionals, For loops and While loops.

IF / ELIF / ELSE Statements

The if statements allow us to check the truth of a statement or statements and apply logic
to the various possibilities. The if statement is simple at its heart.

if (statement) :
do the following code
do this line as well
This line is NOT part of the if statement.

The statement starts with the 'if' keyword (the 'if' must be in lowercase) followed by
the conditional expression then a colon character. The line(s) of code that you want to
have executed if the statement is true, must be indented.

Assume that the variable a = 3 and the variable b = 7.

if a < b:
print("a less than b")

a less than b

You can also add a second option so that if the first statement is not true, the
program would run the alternate code. This is the else option. The ‘else’ phrase does not
allow for any additional logic and must be followed by a colon.
if b < a:

print("b less than a")
else:

print("a less than b")

a less than b

43

CHAPTER 5 © CONDITIONAL STATEMENTS

If you have more than two options, you can use the elif option of the if / else
statement. You can have as many elif statements as you need. The elif option must have
some sort of logic and be followed by a colon.

if a ==
print('a=3")
elif a ==
print('a=4")
else:
print('a not 3 or 4')

a=4

The if / elif / else statements must be at the main indention level with the logic
indented.

a=3
b=4
c=6
if a<b:
d=5
if (c<b) or (b<a):
d=2
e=>5
elif (c<a):
c=a
a=17
print a,b,c,d,e
74655

For

The for keyword creates a loop controlled by the parameters that follow the assignment
and will run a given number of times. Like the if statement, the keyword is followed by a
sequence that will be “stepped” through (iteration), followed by a colon. All logic that is to
be done within the loop is indented. In its simplest form, the for loop looks like this:

for x in range(3):
print(x)

-

44

CHAPTER 5 © CONDITIONAL STATEMENTS

The range function will create a list based on the numbers that are in the parameter.
In the earlier case, the list would be [0,1,2]. Under Python 2.x, you can use the xrange
function instead of range. Xrange creates a generator that, in turn, creates the numbers as
needed instead of creating a list, using less memory and makes the loop faster, because
the numbers are generated as needed. If you are using Python 3.x, the xrange function is
removed but is actually renamed as range.

for x in xrange(3):
print(x)

[y

As I stated earlier, the range function will create a list of values based on the
parameter values. Because of this, you can use a list directly in your for statement.

for x in [1,2,3,4,5,6,7,8,9,10]:
print x

W ooOo~NGOVTAWNER

[
o

You can also walk, or iterate, through a string as the list of values.

for char in "The time has come":
print char

m =S H

45

CHAPTER 5 © CONDITIONAL STATEMENTS

=2 0N

If you are iterating through a dictionary, you can the .iteritems() method of the
dictionary object.

d = {'Key1':1,'Key2':2,"'Key3':3}
for key,value in d.iteritems():
print key,value

Key3 3
Key2 2
Key1 1

Another helpful option is to use the enumerate() function. This will allow you to
iterate through a list and the count as well as the list value will be returned as a tuple.

mounts = ['Evans','Grays Peak','Longs Peak','Quandary’]
for m in enumerate(mounts):
print m

(0, 'Evans')

(1, 'Grays Peak')
(2, 'Longs Peak')
(3, 'Quandary’)

Break

The break statement allows early termination of a loop (for or while). In this snippet,
the for loop should run from 0 to 4, but when the loop hits the value of 3, the loop is
terminated.

for x in range(5):

if x ==
break
else:
print(x)
0
1
2

46

CHAPTER 5 © CONDITIONAL STATEMENTS

Continue

The continue optional statement in a for loop allows for normal loop operation, but at the
specified condition, the rest of the logic will be skipped for that iteration. In the snippet
here, when the value in the for loop reaches 3, the print(x) logic will be skipped and the
loop continues.

for x in range(5):
if x ==
continue
else:
print(x)

& N B O

Else

The for loop also supports an optional else statement. Unlike the else statement used with
the if conditional, it is more like the else in a try statement in that it always runs at the
end of the loop.

for x in range(5):
print x

else:
print "The else"

- hWNRO

he else

Pass

The pass statement will do nothing, which seems like a silly thing to have. However, it is
actually valuable where you need to have a statement (like an option within an if clause)
or to “stub” out a routine to be filled in later.

a =3

if a == 2:
pass

47

CHAPTER 5 © CONDITIONAL STATEMENTS

else:
print("A != 2")

Al=2

def testfunction():
pass

While

The while loop is used when you need your logic repeated until a certain condition is
met, usually because you don't know how many times it will take. This could be because
you are waiting for some condition to be met, like a timer expiring or a certain key press.

cntr = 0

while cntr < 11:
print cntr
cntr += 1

0

1

2

3

4

5

6

7

8

9

10

You can create an infinate loop as well, so you might want to be careful and create a
way for the loop to break. If you end up in an infinate loop, you can press Ctrl + C to end
the execution of your code.

cntr = 1

while cntr ==
#do something forever.

48

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 6

Data Structures

Data structures are important for most any serious (and some not so serious) programs.
They allow us to store groups of related data under a single variable name and access
them quickly and logically. There are many types of data structures available under
Python and each will be explained in the following sections.

Data Structure Example

Let’s say that we need to keep a list of color names that are available to the end user and
that list has the following values:

Red, Orange, Yellow, Green, Blue, Purple

We could simply create a number of distinct and separate variables to hold each
value. On the other hand, we could use a list data structure to keep track of them under a
single variable.

ColorList = ['Red','Orange', 'Yellow', 'Green','Blue','Purple']

By doing it this way, we can easliy access whichever color name we want by simply
using an index into the ColorList variable.

print ColorlList[2]

Will return “Yellow” Remember that the indexes are zero-based.

Digging Deeper

If we need to keep data, such as registration information, for the program that we are
creating, we would need information like:

First Name, Last Name, Address, City, State, Postal Code

49

CHAPTER 6 * DATA STRUCTURES

The first thought that springs to mind is to use a database to store this information.
However, a quicker way to do it would be to use a dictionary structure. A dictionary
(as you will see below), allows us to store data associated with a “key” By using the
dictionary, we don’t have the overhead of dealing with databases. We'll examine this later
on when we discuss dictionaries later on in this chapter.

Lists

In other languages, there is a data structure called an Array. Going back to the shoe box
analogy that I used back in Chapter 2, an array is simply a bunch of shoe boxes “glued”
together that holds like data together under a single variable name. Python does not
provide a native Array type. Instead, we have the List object.

A list is simply a collection of items that are accessible by an index number, similar
to arrays. Unlike Arrays, Lists can contain any value like strings, integers, floating point
numbers or other objects like dictionaries or even other lists. You can also mix types of
data within a list. Lists are dynamic, so may be modified at any time.

To create a list by hand, you would use the square bracket characters “[“ and “]” Each
item in a list is separated by a comma.

MyList = ['This','is','a", 'list"]

NumberlList = [0,1,2,3,4,5,6]

MyEmptyList = []

Sillylist = [3,'A String',42,'42',5,'The End']

To access a single item within a list, you would do it by accessing a list by its index
value. Lists have zero-based indexes, so the first item in a list is index 0, the second item is
index 1, and so on. Using the above example MyList:

>>> print MyList[2]
a

>>> print MyList[3]
list

>>> print MyList[O0]
This

If you attempt to access the index of a list that does not exist (index position 4 in the
MyList list for example), you will get an error.

To walk (or iterate) through the entire list from beginning to end, you can use a
simple for loop:

for i in range(0,len(MyList)):
print MyList[i]

This
is

list

50

CHAPTER 6 © DATA STRUCTURES

An alternative way to do this is to something like the following code, which some
programmers find simpler and more “pythonic” and at the same time produces the
same output:

for elem in Mylist:
print elem

You can also convert other types of data structures to a list. In the example below, the
variable t is a tuple.

>»> t
»> 1
»>1

[1, 2, 3]

(1,2,3)
list(t)

List Functions

The following built-in operators are available to the List object.

len(L)

Returns the number of items in a list.

>»> 1 =[1,2,3,4,5,6,7]
>>> len(1)
7

min(L)

Returns the minimum value in a list.

»> 1 = [1)2)3)4)5)6)7]
>>> min(1)
1

max(L) function

Returns the maximum value in a list.
»> 1= [1)2J3)4J5)6J7]

>>> max(1)
7

51

CHAPTER 6 * DATA STRUCTURES

XxinL

Returns True if x is in the list L.

»> 1= [1)213)415)617]
>»> 42 in 1

False

>»> 3 1inl

True

xnotinlL
Returns True if x is NOT in the list L.
»> 1= [1)2)3)4)5)6)7]

>>> 42 not in 1
True

L1 + L2

Concatenate L2 to the end of L1.

»> 1= [1)2)3)4)5)6)7]

>>> 12 = [9,10,11,12]

>>> 1412

[1, 2, 3’ 4’ 5, 6) 7’ 9’ 10’ 11’ 12]

LIx]

Retrieve item in list at index position x (zero-based). This is pretty much the same thing
as using an array in another language. If you need to have something that acts like a
multidimensional array, which is not available in Python, you can use a list of lists.

»> 1 =[1,2,3,4,5,6,7]

>>>1[3]
4

L[x1:x2]

Slice of list L from index position x1 to x2 (zero-based).
»> 1 1,2,3,4,5,6,7]

= [
>>> 1[2:4]
[3, 4]

52

CHAPTER 6 © DATA STRUCTURES

del(L[x])

Removes the item from list L at index position x (zero-based).
>>>1= [lFI, lEl’ IDl, lcl, lBI, lAl]

>>> del(1[2])

>»> 1
[lFI, 'EI, Icl, IBI, IAI]

List Methods

The following methods are available to lists.

.append(x)

Append the value in x to a list.

>>> 1 =1[0,1,2,3,4]
>>> 1l.append(5)
>»>1

[0, 1, 2, 3, 4, 5]

.extend(L)

Append a list to another list. In the following example, 1 is modified, 12 is not.

>>> 1 =[0,1,2,3,4]

>>»> 12 = [5,6,7]

>>> l.extend(12)

>»> 1

[0, 1, 2, 3, 4, 5, 6, 7]

.insert(i,x)

Insert a value x into list at index I. The following example inserts the value 5 at position 2
in the list.

>>> 1 =[0,1,2,3,4]
>>> l.insert(2,5)
>»>1

[0, 1, 5, 2, 3, 4]

If carefully used, lists with the .insert() and .pop() methods can be a quick and easy
way to implement a LIFO (Last in, First Out) queue or stack.

53

CHAPTER 6 * DATA STRUCTURES

.remove(x)

Removes the first item in the list that matches ‘x! An error occurs if the item does not
exist. The following example removes the value 2 from the list. The second example tries
to do it again but gets an error.

>»> 1 = [0,1,2,3,4,5]

>>> l.remove(2)

>»> 1

[0, 1, 3, 4, 5]

>>> l.remove(2)

Traceback (most recent call last):

File "¢stdin»", line 1, in <moduley
ValueError: list.remove(x): x not in list

-pop([i])
Returns and removes the last item in the list if the optional index number is not included.

If it is, it removes the item at that index (zero-based). The following example uses pop() to
remove the last item in the list, then removes the item at index position 2.

>»»> 1 =[0,1,2,3,4,5]

>>> L.pop()
5

>>> 1.pop()
4

>>> l.pop(2)
2

»> 1

[0, 1, 3]

If carefully used, lists with the .insert() and .pop() methods can be a quick and easy
way to implement a LIFO (Last in, First Out) queue or stack.

.index(x)

Returns the position of the item in the list.

The following example first shows the index position of the value 3 in the example
list (which is 3). The second example shows the index position of the item “Oranges” in
the list.

»> 1 = [o0,1,2,3,4,5]

>>> L.index(3)

3

>>> 11 = ['Apples’,'Oranges’, 'Kiwi', 'Peach’]
>»> 11

54

CHAPTER 6 © DATA STRUCTURES

['Apples’, 'Oranges', 'Kiwi', 'Peach']
>>> 11.index('Oranges")
1

.count(x)

Returns the count of the matching items in the list. If item is not in the list, it returns 0.

»> 1= [311J314J316J718]
>>> 1l.count(3)

3

>>> L.count(2)

0

.sort()

Sorts the list from low to high.

>»> 12 = [0)112)312)517)311)2;5]
>>> 12.sort()

>>> 12

[0, 3, 1, 2, 2, 2, 3, 3, 5, 5, 7]

.reverse()

Reverses the list.

>>> 1 =[0,1,2,3,4,5,6,7,8]

>>> l.reverse()

>»> 1

[8, 7, 6, 5, 4, 3, 2, 1, 0]

>>> 1= ['A",'B",'C','D","E", "F']
>>> l.reverse()

>»> 1

[lFI’ IEI’ IDl, Icl’ lBI’ IAI]

Dictionaries

Dictionaries are a very valuable tool in our Python arsenal. A dictionary is like a list,

but it allows you to store data with a keyword attached as a matched pair with the data.
Earlier in this book, I talked about the need for registration information in an imaginary
program. The information that is needed would be:

First Name, Last Name, Address, City, State, Postal Code

55

CHAPTER 6 * DATA STRUCTURES

A dictionary allows us to keep that information very easily. For each piece of data we
have a key that is associated with it. The structure of the key/value pair is:

{Key:Value}

Each key within a dictionary must be unique, but the value may be repeated if
needed. Curly brackets are used to set up the dictionary. Keys may be strings or numbers.

dict = {"Fname":"Jack","LName":"Sprat"}

You can create a blank dictionary by simply assiging a variable to an empty set of
curly brackets.

Names = {}

You can add new key/value pairs to a dictionary.

>>> names = {'fname':'Fred','lname': 'Frackel', 'city':'Aurora’, 'state':'C
0'}>>> names['phone'] = '222-222-2222'

>>> names

{'1name': 'Frackel', 'city': 'Aurora’, 'state': 'C0', 'fname': 'Fred',
'phone’ : '222-222-2222"}

To iterate (walk through) a dictionary you can use the . iteritems() builtin
function. Notice that dictionaries do not store the key/value pairs in any predefined order,
so items might not appear in the order that it is entered:

>>> names = {'fname':'Fred’, 'lname’:'Frackel’, 'city':'Aurora’, 'state':'C0"}
>>> for key,value in names.iteritems():
print key,value

1name Frackel
city Aurora
state CO
fname Fred
>>>

Dictionary Functions

Dictionaries have the following built-in functions.

len(dictionary)

Returns the number of items in a dictionary.

>>> d = {'lname':'Frackel','fname':'Fred', 'city':'Aurora’, 'state':'C0"'}

>>> len(d)
4

56

CHAPTER 6 © DATA STRUCTURES

dict(list)

Creates a dictionary from a list provided and the list must contain at least one two-
element tuple. The first element in the tuple is the key and the second is the value.

>>> d2 = dict([('one',1),(two",2),("three',3)])
>>> d2
{'three': 3, "two': 2, 'one': 1}

Dictionary Methods

Dictionaries have the following built-in methods:

.clear()

Removes all items from a dictionary.

>>> test = {"one':"1","two"':"'2", "three':'3"'}
>>> test

{'three': '3', "two': '2', 'one': '1'}

>>> test.clear()

>>> test

}

.copy()

To make a copy of a dictionary, use the .copy() method. This is a shallow copy, which
means that the content of the dictionary is not copied directly by value, but by reference
and points to the actual original dictionary.

>>> first = {"a':1,'b"':2,"'c":3}
>>> clone = first.copy()

>>> first

{'a': 1, 'b': 2, 'c": 3}

>>> clone

'a': 1, 'b': 2, 'c': 3}

.get(key[,default])

Returns a single value by key from a dictionary. Unlike the . pop() method, this does not
remove the key/value pair from the dictionary. If key does not exist in dictionary, value
from the optional default parameter is returned. If default is not given, returns None.

57

CHAPTER 6 * DATA STRUCTURES

>>> names = {'lname': 'Frackel', 'city': 'Aurora', 'state': 'CO', 'fname':
'Fred', 'phone':'222-222-2222"}

>>> names

{'1name': 'Frackel', 'city': 'Aurora', 'state': 'CO', 'fname': 'Fred',
'phone’ : '222-222-2222"}

>>> names.get('lname")

'Frackel'

.has_key(key)

Returns True if the key exists in the dictionary. This method has been depreceated and
the suggested way to check is to use key in d.

>>> names = {'lname': 'Frackel', 'city': 'Aurora', 'state': 'CO', 'fname':
'Fred', 'phone':'222-222-2222"}

>>> names.has_key('city")

True

>>> names.has_key('address")

False

.items()

Returns a list of all key/value pairs in a dictionary. Notice that this is a nonsorted list and
is not in the order that the data was entered.

>>> names = {'lname': 'Frackel', 'city': 'Aurora', 'state': 'CO', 'fname':
'Fred', 'phone':'222-222-2222"}

>>> names.items()

[('lname’', 'Frackel'), ('city', 'Aurora'), ('state', 'C0'), ('fname',
'Fred'), ('phone’, '222-222-2222')]

keys()

To get a list of keys from a dictionary, use the built in function . keys (). Notice that this is
anonsorted list and is not in the order that the keys were entered.

>>> names = {'lname': 'Frackel', 'city': 'Aurora', 'state': 'CO', 'fname':
"Fred'}

>>> names.keys()

['1name', 'city', 'state', 'fname']

To get a list of keys from a dictionary that is sorted, assign the return values from the
.keys () function to a list then apply the .sort() function to that variable.

58

CHAPTER 6 © DATA STRUCTURES

>>> names={'lname': 'Frackel', 'city': 'Aurora’', 'state': 'CO', 'fname':
"Fred'}

>>> namekeys = names.keys()

>>> namekeys.sort()

>>> namekeys

['city', 'fname', 'lname', 'state']

.pop(key[,default])

Removes and returns the value of an item in the dictionary based on the key provided. If
default is not given and the key does not exist, a KeyError is raised.

>>> names = {'lname': 'Frackel’, 'city': 'Aurora', 'state': 'CO', 'fname':
'Fred', 'address':'123 Main Street'}

>>> names.pop('address")

'123 Main Street'

>>> names

{'1name': 'Frackel', 'city': 'Aurora’, 'state': 'C0', 'fname': 'Fred',
'phone’ : '222-222-2222"}

.setdefault(key[,default])

Returns a value from the supplied key, if it exists. If not, it enters the key as a new item
with the supplied default value.

>>> di

{‘a': 1, 'c¢': 3, 'b': 2, 'e': 0, 'd': 4}

>>> di.setdefault('c’',6)

3

>>> di.setdefault('f',6)

6

>>> di

{"a': 1, '¢': 3, 'b': 2, 'e': 0, 'd': 4, 'f': 6}

.update(other)

Updates the dictionary with the key/value pair provided in other. This will overwrite
existing keys. Returns None. The other parameter can be either a tuple or list providing
the key/value pair(s), or another dictionary.

>>> names = {'lname': 'Frackel', 'city': 'Aurora’, 'state': 'CO', 'fname': 'Fred'}
>>> names.update({'address':'123 Main Street'})
>>> names

{'lname': 'Frackel', 'city': 'Aurora', 'state': 'CO0', 'fname': 'Fred’,
'phone’ :'222-222-2222", 'address': '123 Main Street'}

59

CHAPTER 6 * DATA STRUCTURES

values()

Returns a list of all values in a dictionary. The list returned is unsorted and may not be in
the order that the data was entered. Using the list after the above update:

>>> names

{'1name': 'Frackel', 'city': 'Aurora’, 'state': 'C0', 'fname': 'Fred',
'phone’ : '222-222-2222"}

>>> names.values()

['Frackel', 'Aurora’, 'CO0', 'Fred', '222-222-2222']

Tuples

A tuple is another kind of sequence data type. Tuples are a number of values seperated by
commas. The data within a tuple may consist of numbers, strings and even other objects.

>>> t = 3,42,'The time has come for all good men'
»> t

(3, 42, 'The time has come for all good men')

>>> t[0]

3

>>> t[2]

'The time has come for all good men'

Tuples are immutable objects, which mean that once it has been created, it can not
be changed.

>>> t[o] = 73
Traceback (most recent call last):
File "<¢stdin»", line 1, in <module»
TypeError: 'tuple' object does not support item assignment

Although a tuple is immutable, it can contain mutable objects like lists.

>>> t1 = [1,2,3],['a','b","'c"]
>»> t1

([1, 2, 3], ['a", 'b', 'c'])
>>> t1[0]

[1, 2, 3]

>>> t1[o][1] = 4

>»> t1

([1, &, 3], ['a’, 'b', 'c'])

60

CHAPTER 6 © DATA STRUCTURES

You can also assign the values within a tuple to mutable variables.

> X,y = t1
>>> X

[1, 4, 3]
>y

[lal’ lbl, Icl]

Sets

Sets are an unordered collection with no duplicate elements. Sets are mutable
(may be changed).

In the snippet below, you will see that we use the string ‘This is a test’ as the data
for the set. When we get the actual data used in the set, there are only eight values. All
other values are discarded because they are duplicates. Notice also that when the set is
displayed, it is actually a list.

>>> settest = set('This is a test')
>>> settest
set([lal’ L] l’ |el’ lil’ lhl’ lsl’ |Tl’ ltl])

>>> 'a' in settest

True

>>> 'b' in settest
False

Set Functions

The following functions are available for sets.

len(set)

Returns the length or count if items within the set.

>>> C

set([2, 3, 4, 5, 6, 7, 8, 9, 11])
>>> len(c)

9

min(set)

Returns the minimum value in the set.
>>> C

set([2, 3, 4, 5, 6, 7, 8, 9, 11])

>>> min(c)
2

61

CHAPTER 6 * DATA STRUCTURES

mabx(set)

Returns the maximum value in the set.

>>> cset([2, 3, 4, 5, 6, 7, 8, 9, 11])
>>> max(c)
11

Set Methods

The following methods are available for sets.

.clear()

Removes all data from the set.

>>> b = set([1,2,3,4,5])
>>> b

set([1, 2, 3, 4, 5])
>>> b.clear()

>»> b

set([])

.copy()

Creates a new set by making a shallow copy.

»> b

set([3, 4, 5, 6])
>>> ¢ = b.copy()
> ¢

set([3, 4, 5, 6])

.pop()

Removes an arbitrary item from the set. If the set is empty, a KeyError exception is raised.

>»> b = set([1,2,3,4,5])
>»> b
set([1, 2, 3, 4, 5])

>>> b.pop()
1

>>> b.pop()
2

>>> b.pop()

62

CHAPTER 6 © DATA STRUCTURES

3
>>> b

set([4, 5])

.add(item)

Adds an item to the set. Since sets can not hold duplicates, if the item already exists,
nothing will be done.

>»> b

set([4, 5])
>>> b.add(3)
>>> b

set([3, 4, 5])
>>> b.add(4)
>»> b

set([3, 4, 5])

.remove(item)

Deletes an item from the set. If the item does not exist, a KeyError exception will be raised.

>>> b

set([3, 4, 5])

>>> b.remove(4)

>>> b

set([3, 5])

>>> b.remove(4)

Traceback (most recent call last):
File "¢stdin»", line 1, in <module>

KeyErrox: 4

.discard(item)

Removes an item from the set. If the item is not in the set, no error will be raised.

>»>> b

set([3, 5])

>>> b.discard(4)
>>> b.discard(5)
>»> b

set([3])

63

CHAPTER 6 * DATA STRUCTURES

.update(set) or alternately xl=y

Merges values from the new set into the old set. If a value exists, it is ignored.

>»> b

set([3])
>>> b.update([3,2,1,4,5])
>»> b

set([1, 2, 3, 4, 5])

.intersection_update(set) or alternately x&=y

Updates the set x, discarading any elements that are not in both setxand y.

>»> a = set([1,2,3,4,5])

>>> b = set([2,3,4])

>>> a.intersection update(b)
>>> a

set([2, 3, 4])

.difference_update(set) or alternately x-=y

Updates set x to a new set having only the values NOT in both setx and y.

>>> a = set([1,2,3,4,5])
>>> b = set([2,3,4])

>>> a.difference_update(b)
>>> a

set([1, 5])

.symmetric_difference_update(set) or alternately x =y

Updates set x to contain only those values that are not in both setx and y.

>>> a = set([1,2,3])

>>> b = set([3,4,5])

>>> a.symmetric_difference_update(b)
>>> a

set([1, 2, 4, 5])

.Issubset(set) or alternately x<=y

Returns True if set y is a subset of set x; otherwise, it returns False.

64

CHAPTER 6 © DATA STRUCTURES

>>> a = set([1,2,3])
>>> b = set([3,4,5])
>>> ¢ = set([2,3])
>>> c.issubset(a)
True

.Issuperset(set) or alternately x>=y

Returns True if set x is a superset of set y; otherwise, it returns False.

>>> a = set([1,2,3])
>»> ¢ = set([2,3])
>>> a.issubset(c)
True

.union(set) or alternately xly

Returns a set that conains all unique values in sets x and y.

>>> a = set([1,2,3])
>»> ¢ = set([5,6,7])
>>> a.union(c)

set([1, 2, 3, 5, 6, 7])

.intersection(set) or alternately x&y

Returns a new set that contains the values that are in both setsx and y.

>>> a
set([1, 2, 3])
>»> b

set([2, 3])
>>> a.intersection(b)

set([2, 3])

.difference(set) or alternately x-y

Returns a new set that contains the values that are not in both setsx and y.

>>> a
set([1, 2, 3])
>»> b

set([2, 3])
>>> a.difference(b)

set([1])

65

CHAPTER 6 * DATA STRUCTURES

.symmetric_difference(set) or alternately x"y

Returns a new set that contains the values that are not in both sets x and y, but does not
update set x.

>>> a

set([1, 2, 3])

>>> b = set([3,4,5])

>>> a.symmetric_difference(b)
set([1, 2, 4, 5])

Frozensets

Frozensets are, for the most part, the same as sets, except they are immutable (they can
not be changed). This means that the .add and .update methods will return an error.

66

CHAPTER 7

Keywords

Keywords are special reserved words that cannot be used as variable names. Keywords
will change over time as Python versions change. Below is a short program that will allow
you to obtain a list of keywords specific for your version of Python. It is written using
Python 3.x syntax, but will work for version 2.7 as well.

Import keyword
print(keyword.kwlist)

List of Python Keywords

Below is a list of Python keywords, in alphabetical order, for version 2.7.1.

and as assert break
class continue def del
elif else except exec
finally for from global
if import in is
lambda not or pass
print raise return try
while with yield

In addition, Python 3.x adds four keywords and removes one. The additional
keywords are:

False None True nonlocal

The keyword exec has been removed from Python 3.x.

67

CHAPTER 7 © KEYWORDS

The list below is ordered by type.

Boolean Conditional Debugging Error Handling Evaluation
And Elif Assert Except In
Is Else Print Finally none
Not If Raise
or pass try
Functions Iterators/ Libraries Loops Misc
Generators
Def yield As Break Class
Lambda From Continue Del
Pass import For exec
return In
Pass
While
Output Unmanaged Variables
Resources
print with Global
None
nonlocal

Keywords Explained

Below we will examine each keyword, what it does and how it would be used. The keywords
for Python 2.x are presented in alphabetical order for easy reference with the additional
keywords for Python 3.x following. The following format will be used for each keyword:

e Keyword
e Usedfororin

e Explanation and code (where appropriate)

and
Boolean Evaluation

The and keyword evaluates two equations, and if both are true then returns true. If either
of the two are false, then returns false.

68

CHAPTER 7 © KEYWORDS

>>> a =
>»> b =
>»> a >
False
>»> b ==2and a>1
False

>»>a >0 and b ==
True
>»>a<bandb==2
True

as
Libraries, Modules

Allows us to create a different reference name, or alias, for a module or function imported
into our program.

>>> import sys as s
>>> print s.version
2.7.1 (r271:86832, Nov 27 2010, 18:30:46) [MSC v.1500 32 bit (Intel)]

assert
Debugging

The assert keyword forces a test of an expression and the compiler will error out if the
expression is false.

>»> Cc =3

>>> assert <1

Traceback (most recent call last):
File "¢stdin»", line 1, in <module»

AssertionExror

>>> assert c > 4

Traceback (most recent call last):
File "¢stdin»", line 1, in <module»

AssertionError

>>> assert ¢ ==

>>>

69

CHAPTER 7 © KEYWORDS

break
Loops

The break keyword allows the current loop to be aborted early. The following snippet
shows that when the counter variable ‘i’ reaches 5, the loop will be exited.

for i in range(10):
print i
if i ==
break

vihWwNRO

class
Misc.

The class keyword allows you to create a new class, which is important for Object
Oriented Programming.

The class must be instantiated by assigning it to a variable. Then we can call any of
the functions within the class.

class testi:
def _init_ (self,inval):
self.a = inval #dummy statement

def run(self):
for cntr in range(self.a):
print cntr

t = test1(20)
t.run()

continue
Conditional Statements, Loops

The continue keyword is used in loops to skip the rest of the code within the loop for
that iteration of the loop. In the following snippet, notice that if the cntr variable hits the
number 5, it will skip the print statement and continue back to the top of the loop.

70

CHAPTER 7 © KEYWORDS

for cntr in range(10):
if cntr ==
continue
print cntr

W oO~NGOA~L,WNRO

def
Functions

The defkeyword allows us to create a function.

def log(strng):
print(strng)

log("This is a test...")

This is a test...

del
Misc
The del keyword removes a value or values from a list given its index.

>>> 1st = [1,2,3,4,5,6]
>>> st

[1, 2, 3, 4, 5, 6]

>>> del 1st[3]

>>> st

[1, 2, 3, 5, 6]

In the above example, we request that the item at index position 3, in list 1st be
deleted. Remember, all indexes are zero based, so that would be the number 4.

You can also delete items in a list using a slice. The command del 1st[:2] would
delete the first two items in the list, leaving (after the first del command) [3,5,6].

71

CHAPTER 7 © KEYWORDS

elif
Conditional Statements

The elif statement is an optional part of the if conditional statement. It is used when the
expression(s) above it evaluate to False and you want to test other expressions. The elif
statement is at the same indention level as the if statement line and is followed by an
additional statement to be evaluated then by a colon. The code block must be indented.
There can be as many elif statements as needed and may be followed by an else statement
if desired (see below).

a=3
if a ==
print("Variable A = 1")
elif a == 2:
print("Variable A = 2")
elif a ==
print("Variable A = 3")
else:

print("Variable is greater than 3")

else
Conditional Statements

The else keyword is an optional part of the if conditional statement. It is used when the if
statement (or any elif statements) evaluates to false. This can be considered an “all else
has failed, so do the following code.” The else keyword is at the same indentation level as
the if statement line and is followed immediately by a colon. No expressions are allowed
on the line containing the else keyword. The logic block that needs to be executed is
indented at the same level as the logic block for the main if statement. The else keyword is
also an optional part of the for and while loops.

a=3
if a > 5:

print("Variable a is greater than 5")
else:

print("Variable a is less than 5")

except
Error Handling

The except keyword is used with the try keyword for error trapping. If the code within the
try block fails for any reason, the code within the except block will be executed. This code
can be a simple pass statement, or something that logs or outputs the error information.
There may also be several different except statements, each handling a specific error.

72

CHAPTER 7 © KEYWORDS

try:

try block code here
except:

except block code here

The except clause may contain some sort of test for the type of error that was
encountered.

try:

try block code here
except TypeError:

except block code here

exec
Misc.

Executes Python statements that are stored in a string or a file. (version 2.x only). This
could create a security problem and should only be used as a last resort.

>>> code = 'print "This is a test"'
>>> exec code

'print "This is a test

finally

Error Handling

The finally keyword is part of the try / except error handling system. The code in the
finally block will be always be run leaving the try code block regardless of whether an
error was encountered or not. This is a good place to put code that closes files or releases
network resources.

try:
try block code here
except:
except block code here
finally:
finally block code here that will always run.
for
Loops

The for keyword creates a loop controlled by the parameters that follow the keyword Like
the if statement the keyword is followed by a sequence (iterable such as a list or string)
followed by a colon. All programming statements that are to be done within the loop is
indented. In its simplest form the for loop looks like this:

73

CHAPTER 7 © KEYWORDS

for I in range(10):
print(i)

More about for loops can be found in Chapter 5.

from
Libraries

The from keyword allows us to import a variable or function directly from a specific
library module without having to qualify the library name (i.e., sys.path). It also imports
only the requested routines from the library. If you wish to import all functions from a
library you can use something like "import sys"or "from sys import *".

>>> from sys import path

>>> path

['", "C:\\WINDOWS\\system32\\python27.zip', 'C:\\Python27\\DLLs',
'C:\\Python27\

\Lib', 'C:\\Python27\\lib\\plat-win', 'C:\\Python27\\1ib\\lib-tk',
'C:\\Python27

'y 'C:\\Python27\\1lib\\site-packages’]

global
Variables

As I discussed in cCapter 2, variables have a limited scope. If a variable is declared within
a function, any manipulation of that variable is limited to that code block within the
function, even if the name of the variable is the same of one that is used outside of that
function. The global keyword allows the manipulation to affect other variables outside of
the scope of that routine.

X =3

def tryit():
global x
X =06

def tryit2():
global x
X =x%*3

>>> X

6

>>> tryit2()

>>> X

4

CHAPTER 7 © KEYWORDS

18

>>> tryit()
>>> X

6

if
Conditional Statements

The ifkeyword is used for conditional statements. In its simplest form, the if statement
consists of an expression that gets evaluated at run time and a block of code (which can
consist of single line) that will get executed at run time if the expression is true. The if
statement can be extended by the elif and else keywords explained earlier. The format
for the if statement starts with the ifkeyword, followed by the expression and a colon.
The block of code that is to be executed if the expression is true must be indented. All
indented code will be considered as part of the logic block. If the expression is not true,
the code will pass to the next unindented line of code, which could be an elif, else or just
the next line of the program code.

a =3
if a > 2:
print("Variable A is greater than 2")

import
Libraries

The import keyword allows code from outside libraries to be included in our code.

>>> import sys
>>> print(sys.version)
2.7.1 (r271:86832, Nov 27 2010, 18:30:46) [MSC v.1500 32 bit (Intel)]

in
Evaluation, Loops

The in keyword can be used to test the existence of a value within a tuple, list or other
iterable.

>>> a = (1,2,3)
>>> 4 in a
False

>>> 3 in a
True

75

CHAPTER 7 © KEYWORDS

You can also use the in keyword as part of a for loop. In the following snippet, a
list that contains the values from 0 to 9 is created by the “range” function and that list is
iterated or walked to do the loop.

for i in range(10):
print i,

0123456789

is
Boolean Evaluation

The is keyword evaluates two expressions, checking to see if they are the same object. You
can not evaluate two empty lists (x = [] and y = []) because they are not the same object.

n
N

>»>m
> X = 2
>>> m is X
True

>>> m is 2
True

lambda

Functions

Allows the creation of an anonymous inline function.

>>> a = lambda d,e,f : d+e+f+3

>>> a(1,2,3)

9

>>> t = (lambda a='one',b="two',c="three' : a+b+c)
>>> t('four', 'five')

'fourfivethree'

not
Boolean Evaluation

The not keyword negates a Boolean value. True becomes False and False becomes True.

>»>a=1

>»> b =2

>>> not(a == b) # a==b is false. not(False) becomes True
True

76

CHAPTER 7 © KEYWORDS

or
Boolean Evaluation

Tests all expressions, and if at least one is True then returns True, otherwise returns False.

a = "Test"

b = "0f"

c = "OR"

if a == "1" or b == "Three" or ¢ == "ORD":
print("True")

else:
print("False")

False

if a == "1" or b == "Three" or ¢ == "OR":
print("True")

else:
print("False")

True

pass

Conditional Statements, Loops

The pass keyword allows you to “stub” out a function or conditional option that is
not yet finished.

Def DummyFunction():
pass

if a > 2:
pass

else:
pass

print
Output, Debugging

The print keyword allows you to send output to the terminal or command prompt during
the execution of your code. When in the debugging stage of your program, you can also
use the print keyword to display the value of certain variables to help you see where your
code might be going wrong.

7l

CHAPTER 7 © KEYWORDS

Python 2.x allows for the print statement to be formatted like this:

> X =3
»>y =4

>>> print x,y
34

However, Python 3.x changes the print statement to a function, so it requires print to
be formatted with parentheses surrounding the statement:

> x =3
»>y =4
>>> print(x,y)
34

If you try to use the 2.x format in 3.x, you will get a syntax error. Python 2.x does allow
the 3.x syntax, so you should use the 3.x format whenever possible when you write new
code under Python 2.x.

The print keyword will normally add an escape sequence new line character (‘\n') to
the output unless a comma is placed at the end of the statement.

for x in range(10):
print x,

0123456789

For more information on escape sequences, see the Escape Sequence below.

raise
Error Handling

The raise keyword forces a specified error to occur. This is helpful for testing and
debugging purposes.

y =3
if y < 10:
raise ValueError
Traceback (most recent call last):
File "¢stdin»", line 2, in <moduley
ValueErrox

return
Functions

The return keyword will pass a value or values back to the line of code that called the function.

78

CHAPTER 7 © KEYWORDS

def returntest():
a=4
b =2
return a * b

>>> print(returntest())
8

It is possible to return multiple values from a function. In this case, the return value
is a tuple.

def returntest2():

a=4
b=2
c=a*b

return a,b,c
>>> print(returntest2())
(a, 2, 8)

ry
Error Handling

The try keyword is part of a very versatile error handling system that Python provides.
The try statement should always be used with a matching except statement. The general
format looks something like this:

try:
code here to attempt to execute
except:
code here to attempt to recover from the error

The code between the try and except keywords is run. If no error occurs, the except
portion of the routine is bypassed. If an error does occur, the code after the except
keyword will be run. See also except and finally, above. There is also an optional else
clause, which can contain code that will be executed if the try clause did not raise an
error. The else clause must follow the except clause.

while
Loops

The while keyword creates a loop that is executed over and over until a condition
becomes true.

cntr = 0
while cntr < 9:

79

CHAPTER 7 © KEYWORDS

print cntr
cntr += 1

0

1

2

3

q

5

6

7

8

with

Unmanaged resources

The with keyword allows you to deal with unmanaged resources, like files. If you need
to quickly write to a file and make sure that it gets saved when the code is finished
automatically, you can use the with keyword. In the snippet below, the with keyword
opens the output file and then after the code below it is finished processing, it
automatically closes the file for you.

with open('output.txt','w') as f:
f.write('Welcome to Python')

yield
Iterators, Generators

Returns a generator. Generators are a simple and yet powerful tool for creating iterators.
They are written like a regular function but use the yield statement whenever they want
to return data. Each time next () is called, the generator resumes where it left off (it
remembers all data values and which statement was last executed). In the code sample
below, each time the loop executes, it automatically calls the next () statement.

def CreateGen():
mylist = range(5)
print mylist
for i in mylist:
yield i*i

mygen = CreateGen()

for cntr in mygen:
print(cntr)

80

CHAPTER 7 © KEYWORDS

False

Evaluation (Version 3.x only)

In Python 2.x, False was simply a built-in constant. You were welcome to override it and,
in fact, could write the following:

False = True

and it would be prefectly legal. In version 3.x it has been promoted to a keyword and
is used to mean "0".

None
Evaluation, Variables (Version 3.x only)

The None keyword represents the concept of empty and nothing. If a variable has not
been assigned a value it is automatically given a value of None. When a function is created
that does not explicitly return a value, the function returns a None value.

>>> fred = None
>>> print fred
None

True
Evaluation (Version 3.x only)

In Python 2.x, True was simply a built-in constant. You were welcome to override it and,
in fact, could write the following:

True = False

and it would be prefectly legal. In version 3.x it has been promoted to a keyword and
is used to mean "not 0".

81

CHAPTER 7 © KEYWORDS

nonlocal
Variables (Version 3.x only)

Similar to the global keyword but is only relevant within a function. Functions may have
nested functions. Without the nonlocal keyword, any declared variables have the scope of
anormal function, even if they are nested within another function. By using the nonlocal
keyword within the nested function, the variable value may be changed within the nested
routine. In the following example, there are two functions, each with a nested function.
The two functions are identical with the exception of the nonlocal keyword in Functl. The
variable test in Funct2 has a local scope within the Within function, so the outer variable
test is not changed. In Functl, howevey, it is set as a nonlocal variable, so that the outer
variable test gets modified by the Within function nested in Functl.

def Functi():
test = 1
def Within():
nonlocal test

test = 2
print("Routine Funct1|Within- test = ", test)
Within()

Print("Routine Functl - test = ", test)

def Funct2():
test = 1
def Within():
test = 2
print("Routine Funct2|Within - test = ", test)
Within()
print("Routine Funct2 - test = ",test)

Funct2()
Funct1()

Routine Funct2|Within - test = 2
Routine Funct2 - test = 1
Routine Functi|Within- test = 2
Routine Functi - test = 2

Escape Sequences

Python allows for certain characters such as a Tab or Carriage Return to be embedded
within strings to allow extra control over printing. There are also times that you have

a string that requires a single or double quote that would normally cause problems.
For example, let’s say you decided to create a string using the single quote as the string
delimiter. Without using an escape sequence you can’t have a single quote within the
string. While you could use double quotes to delimit the string, that might be an issue.

82

CHAPTER 7 © KEYWORDS

>>> test = 'This is a test of the \' (single quote) character’
>>> test
"This is a test of the ' (single quote) character"

The escape sequence starts with a backslash (\) character then followed by a
character. This will be interpreted by Python as a special character. Refer to Table 7-1.

Table 7-1. List of Escape Sequences

Escape Sequence Meaning

\\ Backslash (\)

\' Single Quote (')

\" Double Quote (")

\a ASCII Bell (BEL)

\b ASCII Backspace (BS)

\f ASCII Formfeed (FF)

\n ASCII Linefeed (LF)

\N Character named name in the Unicode database
\r ASCII Charriage Return (CR)

\t ASCII Horizontal Tab (TAB)

\UXXXX Character with 16-bit hex value (Unicode only)
\UXXXXXXXX Character with 32 bit hex value (Unicode only)
\v ASCII Vertical Tab(VT)

\ooo Charcter with octal value ooo

\xhh Character with hex value hh

83

CHAPTER 8

Functions

We have already shown the functions that are built into Python. Although there is a
wealth of functions available to us, there will be times that you need to create your own.
In some other programming languages, functions are known as subroutines.

There are usually two reasons for functions. The first is to organize the code into a
logical way to handle certain tasks. The other is to be able to reuse code. The general rule
of thumb is that if you have a block of code that gets called more than once, putitin a
function.

Structure of a Function

The structure of a function is very simple but very important.

def {FunctionName}[(parameters)]: # Function Header
Indented code..... # Code begins here

The header of a function defines the way it will be called. The header begins with the
def keyword followed by the function name, then the optional parameter list and a colon.
Even if there are no parameters, you must place parenthesis before the colon (e.g.,
def Toad():). All code for the function must be indented. The function name must
follow the same naming rules for variables (Single word, No spaces, must start with
either a letter or an underscore, etc). The optional parameter list contains variable names
(preferably not used anywhere else) seperated by commas. The header ends at the colon.

The next line begins the function code and must be indented.

def CountUp(HowHigh):
for Cntr in range(1,HowHigh+1):
print(Cntr)

In this case, the function name is CountUp and there is one parameter, HowHigh.
Notice that we don’t have to declare what the type is for the parameter; it will be determined
by the interpreter. Our code has just two lines, a for loop and a print statement.

Some people who have experience with other programming languages might say
that this is a procedure, not a function, because it doesn’t return anything. In some other
programming languages, this might be true, but not in Python. In a case such as this, the
function actually does return something, the None value.

85

CHAPTER 8 " FUNCTIONS

Returning values

There will be times that your function needs to return one or more values. We use the
return keyword to do this.

In the following example, we define a function called TestFunction that takes two
values. The code simply returns the values back to the calling line. When we call the
function, we assign two variables (a and b) to hold the two returned values.

def TestFunction(vali,val2):
return vali,val2

a,b = TestFunction(3,2)

print('Returned from function... a = %d, b = %d' % (a,b))

Returned from function... a =3, b = 2

Optional Parameters

Sometimes you need to provide for the possibility of optional parameters. For example,
you want to add functionality if a second value is provided. Many times this could be

a flag for the code. We do this by assigning a default value for that parameter. In the
following code snippet, we define a function with a required parameter (vall) and an
optional parameter (val2), which is assigned 0 as its default value. If the function is called
with one parameter value, val2 will default to 0. One word of caution about using optional
or default parameters: They are evaluated when the function is defined, not when the
program is run. In the following example, we are safe because we are using a default of 0.
However, if you set a default value for a parameter that is the result of another function
(such as a time), it could cause great heartache and make you beat your head upon the
keyboard for hours.

def TestFunction2(vali, val2=0):
print('Required value = %d' % val1)
if val2 != 0: # Only print the line below if val2 was provided
print('Optional value = %d' % val2)

TestFunction2(1) # call function with only one value
print('")
TestFunction2(1,2) # call function with two values

Required value = 1
Required value = 1
Optional value = 2

86

CHAPTER 8 © FUNCTIONS

You might realize that if val2 was passed a 0, the second line would not print. You can
get around this issue by setting the default value for val2 to be None, as this code shows.

def TestFunction2(vali, val2=None):
print('Required value = %d' % val1)
if val2 != None:
print('Optional value = %d' % val2)

TestFunction2(1)
print('")
TestFunction2(1,0)

Variables in and out of Functions

Where and how variables are defined determines when they may be changed. If we define
a variable within a function or pass a value to a function, the value of that variable is only
really accessable within that function. This is called scope.When we pass a variable to a
function, what actually is passed is a reference to that variable.

Example 1

a=>5
def test(a):
print('A = %d' % a)
a += 10
print('A is now %d' % a)

print('A starts with %d' % a)
test(a)
print('After test function a = %d' % a)

Here’s what the program is supposed to do followed by its output.

1. Define a variable called ‘a’ and assign it to a value of 5.

2. Define a function called test that takes a parameter also called
‘a’ Note that this is not the same variable.

3. Once we are in the function, we print the value of a (an
assumption that ‘@’ is a decimal number is made here).

4. Add 10 to that value and print the new value. That is the end
of the function and we do not return any values.

5. The program actually starts with the first line (a = 5) then skips
the function and continues with the next nonindented line
(“print(‘A starts..."). So we assign 5 to variable a, then we print
“A starts with 5%

87

CHAPTER 8 " FUNCTIONS

6. Call the function test with the variable a, which is 5, as the
parameter.

7. Inside the function, we print “A = 5% then add 10 to it and print
“A is now 15 When we exit the routine, we then print
“After test function a = “ and the value of ‘a’

Output

A starts with 5

A=5

A is now 15

After test function a = 5

If you are surprised by this, you have to remember two things. The variable ‘a’ was defined
outside of the function, and even though we changed the value passed in to 15, that value
is strictly local to the function. We didn’t actually change ‘a’

This could be looked at as a double edged sword. On the one hand, the value in any
variable passed to a function is safe from manipulation. On the other hand, sometimes
we actually need to change that value.

Example 2

There are two ways to change the value. The first way is to use the global keyword within
the function. The second is to return a value.

Using Global Keyword

a=1
def testi():
a=42

print('Inside testi...a = %d' % a)

def test2():

global a

a=a+1

print('Inside test2...a
print('a starts at %d' % a)
test1()
print('After test1, a is now %d' % a)
test2()
print('After test2, a is now %d' % a)

%' % a)

88

CHAPTER 8 © FUNCTIONS

1. Firstwe define a variable 'a’ and assign the value of 1 to it.

2. Next we define two functions, test1 and test2. Neither of
them will take a parameter

3. Inthe test1 function, we assign a variable 'a' and assign
the value of 42 to it and print the value. Remember that this
variable 'a' has a different scope which is strictly only for use
within this function.

4. Intest2, we use the global keyword when we define the
variable 'a'. This time, because we used the global keyword,
we are saying that anytime we use the variable 'a", it should
refer to the global variable, not a local one. Now anything that
happens to the variable 'a’ within the routine will change the
one declared in the first line of code.

5. Now the code continues and will print "a starts at 1",
procedes to call fuction test1, which creates its own variable
'a', assigns the value of 42 to it and does the print.

6. When we come back from that, we print "After test1, a
is now 1".

7. The function test2 is called next. Because we have declared
that the variable 'a" in the function is the global one, it gets
changed to 2 and we do the print, then on return from the
function, we get "After test2, a is now 2".

Output

a starts at 1

Inside testi...a = 42
After testi, a is now 1
Inside test2...a = 2
After test2, a is now 2

Return a Value

Here is the same program we used earlier but modified to return the changed variable.

a=>5
def test(a):
print('A = %d' % a)
a += 10
print('A is now %d' % a)
return a

89

CHAPTER 8 " FUNCTIONS

print('A starts with %d' % a)
a = test(a)
print('After test function a = %d' % a)

1. You can see that we only added one line (the "return a"line
and modified the call to the test function by assigning the
variable to pick up the return value.

2. When this program runs... we assign 5 to variable 'a’, pass it
to the test function.

3. Itprints the value that was just passed in, increments it by
10, prints the new value (15) and then returns the new value,
which is received by the call to the function and changes the
value 'a’' from 5 to 15.

Output

A starts with 5

A=5

A is now 15

After test function a = 15

Anatomy of a Python Program

Let’s review the structure and an actual example.

Structure of a simple program

A simple python program has the following structure:
Shared Variable Declarations

Functions
Main Routine

A real example

So it would look something like this:

a
b

24
42

90

CHAPTER 8 © FUNCTIONS

def functioni(varA,varB):
print(varA,varB)

def main():
functioni(a,b)

#...

main()

In this program example:

1.

4,

We declare variables 'a' and 'b' so that they are global
in scope.

Next we declare two functions, one called ‘function1’ and
one called 'main'.

The comment line with the elipses simply shows that there
may be more functions below that.

The last line calls the function ‘main’ to start the program.

The exception to this generic template would be if we are writing a program that
includes classes, which are discussed in detail in Chapter 10.

91

CHAPTER 9

Libraries

There are a tremendous number of libraries that are available for Python, both that come
with the standard installation and available from the web. In this chapter, I will try to give
you a list of some of the more “generically” helpful ones. Most of this information was
obtained from the official Python Docs page.

String Services

Thes libraries provide various tools for dealing with string formatting, regular expressions,
strings as files, Unicode strings, and more.

string—Common string operations

The string library contains a number of useful constants and classes, as well as some
deprecated legacy functions that are also available as methods on strings.

re—Regular expression operations

The re library provides regular expression matching operations similar to those found in
the Perl language. Both patterns and strings to be searched can be Unicode strings as well
as 8-bit strings.

StringlO—Read and write strings as files

The StringIO library implements a filelike class that reads and writes a string buffer or
memory files (2.x only).

Data Types

These libraries provide specialized data types such as dates and times, fixed type arrays,
queues, and sets.

93

CHAPTER 9 ' LIBRARIES

datetime—Basic date and time types

Includes objects such as time, date, timezone, and formatted time/date information.

sets—Extends the set capabilities of Python

Provides classes for constructing and manipulating unordered collections.

pprint—Data pretty printer
Provides the ability to “pretty print” data.

Numeric and Mathematical Librarys

Provides numeric and math-related function and data types.

numbers—Numeric abstract base cass

Defines a hierarchy of numeric base classes.

decimal—Decimal fixed point and floating point
arithmetic

Offers serveral advantages over the normal ‘float’ datatype.

math—Mathematical functions

Provides functions such as floor, ceil, trigonometric functions, and more.

random—Generate pseudo-random numbers

The random library also provides shuffleing, random sampling functions, and more.

File and Directory Access

Provides libraries for dealing with disk files and directories.

os.path—Common pathname manipulations

Implements useful functions on pathnames.

94

CHAPTER 9 ' LIBRARIES

fileinput—iterate over lines from input streams

Provides helper class and functions to quickly write a loop over standard input or a
list of files.

Data Persistance

Supports storing Python data in a persistent form on disk.

pickle—Python object serialization

Implements powerful algorithm for serializing and deserializing a Python object
structure.

anydbm—Generic access to DBM-style databases

Generic interface to varients of the DBM database. This library has been renamed to dbm
in Python 3.x.

sqlite3—API interface for SQLite databases

Provides a SQL interface to SQLite databases.

Data Compression and Archiving

Supports data compression with zlib, gzip, bzip2 algorithms, and createion of ZIP and tar
format archives.

zlib—Compression compatible with gzip

Allows compression and decompression of archives using the zlib library.

gzip—Support for gzip files

Simple interface to compress and decompress files such as the gzip and gunzip programs.

bz2—Compression compatible with bzip2

Provides a comprehensive interface for the bz2 compression library.

zipfile—Work with ZIP archives

Provides tools to create, read, write, append, and list ZIP files.

95

CHAPTER 9 ' LIBRARIES

File Formats

These libraries parse various miscellaneous file formats that aren’t markup languages or
related to e-mail.

csv—CSV File Reading and Writing

Implements classes to read and write tabular data is CSV (Comma Seperated Variable)
files.

ConfigParser—Configuration file Parser

Implements a basic configuration file parser language, which provides a structure
similar to Microsoft Windows INI files. This library has been renamed to configparser in
Python 3.x.

Cryptographic Services

This set of library modules implements various algorithms of a cryptographic nature.

hashlib—Secure hashes and message digest algorithm

Implements a common interface to many different secure hash and message algorithms.

md5—MD5 message digest algorithm

Implements an interface to RSA's MD5 algorithm.

sha—SHA-1 message digest algorithm

Implements an interface to NIST’s Secure Hash Algorithm.

Generic Operating System Services

There are many libraries in this section that provide interfaces to operating system
features.

os—Miscellaneous operating system interfaces.

This library provides a portable way of using operating dependent functionality. Provides
functions such as chdir, geteny, file open, and file close.

96

CHAPTER 9 ' LIBRARIES

io—Core tools for working with streams

Provides a Python interface to stream handling.

time—Time access and conversions

Provides various time-related functions.

argparse—Parser for commandline options, arguments,
and subcommands

Provides an easy method to write command-line interface processing.

curses—Terminal handling for character displays

Provides an interface to the curses library for portable advanced terminal handling.
Provides functions such as colored text, positional printing, and screen clearing in a
terminal or command window.

logging—Logging library for Python

The logging library provides functions and classes that implement a flexible event logging
system. Very useful for debugging.

Optional Operating system Services

Provides interfaces to operating system features that are generally modeled after Unix
interfaces.

threading

Provides higher-level threading interfaces.

Multiprocessing—Process-based “threading” interface

Provides support for spawing processing using an API similar to the threading library.

readline—GNU readline interface

Provides a number of functions to facilitate completion and reading/writing history files.

97

CHAPTER 9 ' LIBRARIES

Interprocess Communication and Networking
socket—Low-level networking interface

Provides access to the BSD socket interface.

ssl—TLS/SSL wrapper for socket objects

Provides access to Transport Layer Security (Secure Sockets Layer) encryption for
network sockets.

popen2—Subprocesses with accessible I/0 streams

Provides routines to spawn processes and connect to the IO pipes under Unix and
Windows.

Internet Data Handling

Provides librarys that support handling data formats commonly used on the Internet.

email—An e-mail and MIME handling package

Library for managing e-mail messages.

json—lightweight data interchange format based on a
subset of JavaScript

exposes an API familiar to users of marshal and pickle librarys.

uu—Encode and decode uuencoded files

Provides the ability to encode and decode uuencode format files.

Structured Markup Processing Tools

Provides support for working with various forms of structured data markup.

HTMLParser—Simple HTML and XHTML parser

Provides basis for parsing text files formatted in HTML and XHTML. HTMLParser has
been renamed to html.parser in Python 3.x.

98

CHAPTER 9 ' LIBRARIES

htmllib—Parser for HTML documents

Provides a class that allows for parsing text files formatted in HTML. Removed in Python 3.

xml.etree.elementtree—ElementTree XML API

Provides a flexable container object that handles XML files.

xml.dom—The Document Object Module API

Provides an easy way to handls DOM XML files.

xml.sax—Support for SAX2 parsers

Provides a number of librarys for SAX.

Internet Protocols and support

Provides libraries that implement Internet protocols and support for related technology.

webbrowser—Convienient Web-browser controller

Provides a high-level interface to allow displaying Web-based documents to users.

cgi—Common Gateway Interface support

Support library for Common Gateway Interface (CGI) scripts.

urllib—Open arbitrary resources by URL

Provides a high-level interface for fetching data across the World Wide Web. Has been split
into parts and renamed in Python 3, named urllib.request, urllib.parse, and urllib.error.
urllib.urlopen() function has been removed in Python 3.x in favor of urllib2.urlopen().

urllib2—extensible library for opening URSs

Provides functions and classes that help opening URLs. Has been split across several
modules in Python 3 named urllib.request and urllib.error.

poplib—POP3 protocol client

Provides a class that allows connection to POP3 servers.

99

CHAPTER 9 ' LIBRARIES

Multimedia Services

Implements various algorithms or interfaces that are useful for multimedia applications.

audioop—Manipulate raw audio data

Provides useful routines for sound fragments.

wave—Read and write WAV files

Provides a convenient interface to the WAV sound format.

Internationalization

Provides libraries that are independent of language and locale.

gettext—Multilngual internationalization services

Provides internationalization and localization services with an API.

locale—Internationalization services

Provides access to the POSIX local database and functionality.

Program Frameworks

This set of libraries are frameworks that are oriented toward writing command-line
interfaces.

Cmd—Support for line-oriented command interpreters

Provides a simple framework for writing line-oriented command intrepers. These are
often useful for test harnesses, administrative tools, and prototypes.

shlex—Simple lexical analysis

The shlex class makes it easy to write lexical analyzers for simple syntaxes resembling that
of the Unix shell.

100

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 9 ' LIBRARIES

Graphical User Interfaces with Tk

Tk/Tcl has long been an integral part of Python. It provides a robust and platform
independent windowing toolkit.

Tkinter—Python interface to Tcl/Tk
The Tkinter library is the standard Python to the Tk GUI toolkit.

ttk—Tk-themed widgets

The ttk library provides access to the Tk-themed widget set.

turtle—Turtle graphics for Tk

Turtle graphics is a popular way for introducing programming to kids. It was part of the
original Logo programming language developed in 1966 by Wally Feurzig and Seymour
Papert.

Development Tools
pydoc—Documentation generator and online help system

Automatically generates documentation from Python librarys. The documentation can be
presented as pages of text in a terminal or command window or saved to HTML files.

unittest—Unit testing framework

Supports test automation, aggregation tests into collections.

2to3—Automated Python 2 to Python 3 code translation

A Python program that reads Python 2.x source code and applies a series of “fixers” to
transfer it into a valid Python 3.x code set.

Debugging and Profiling

The libraries in this section helps with Python development. The debugger enables you to
step through code, analyze stack frames and set breakpoints, and so on.

101

CHAPTER 9 ' LIBRARIES

pdb—The Python Debugger

This library defines an interactive source code debugger for Python programs. It supports
setting breakpoints and single stepping at the source line level.

hotshot—High performance logging profiler

This library provides a nicer interface to the _hotshot C library.

timeit—Measure execution time of small code snippets

This library provides a simple way to time small bits of Python code.

trace—Trace or track Python statement execution

This library allows you to trace program execution, generate annotated statement
coverage listings, print caller/callee relationships and list functions executed during a
program run.

Python Runtime Services

These libraries provide a wide range of services related to the Python interpreter and its
interaction with its environment.

sys—System-specific parameters and functions

This library provides access to variables and functions that interact with the interpreter.

warnings—Warning control

Supports the use of warning messages in situations in which it is useful to alert the user
of some condition in a program where that condition normally doesn’t warrant raising an
exception and terminating the program.

Custom Python Interpreters

Libraries in this section allow for writing interfaces similar to Pythons interactive
interpreter.

codeop

Provides utilities on which the Python read-eval-print loop can be emulated.

102

CHAPTER 9 ' LIBRARIES

code—Interpreter base classes

Provides facilities to implement read-eval-print loops in Python.

Importing Librarys

These libraries provide new ways to import other Python librarys and hooks for
customizing the import process.

zipimport—Import librarys from Zip archives
Adds the ability to import Python librarys and packages from Zip format archives.

runpy—Locating and executing Python librarys

This library is used to locate and run Python librarys without importing them first.

Python Language Services

Libraries that assist in working with the Python language.

Parser—Access Python parse trees

This library provides an interface to Python’s internal parser and byte-code compiler.

tabnanny—Detection of ambiguous indentation.

This library is intended to be called as a script to check whitespace in a source file.

MS Windows Specific Services

These libraries are only available on MS Windows platforms.

msilib—Read and write Microsoft installer files

Supports creation of Microsoft Installer (.msi) files.

_winreg—Windows registry access
This library exposes the Windows registry API to Python.

103

CHAPTER 9 ' LIBRARIES

winsound—Sound playing interface for Windows

Provides access to the basic sound-playing functions provided by the Windows platforms.

Unix Specific Services

These libraries provide interfaces to features that are unique to Unix operating system.

posix—The most common POSIX system calls

This library provides access to operating system functionality that is standardized by the
C Standard and the POSIX standard. Do not import this library directly. Instead, import
the os library which provides a portable version of this interface.

pwd—The password database

This library provides access to the Unix user account and password database.

tty -Terminal control functions

This library defines functions for putting the tty into cbrake and raw modes.

Mac 0S X

Thes libraries are only available on the Mac OS X platform. Many of these libraries are not
available when Python is executing in 64-bit mode and have been removed in Python 3.x.

MacOs—Access to Mac OS interpreter fetures

This library provides access to MacOS specific functionality in the Python interpreter. Has
been removed in Python 3.x.

Easy Dialogs—Basic Macintosh dialogs

Contains simple dialogs for the Macintosh. This library has been removed in Python 3.x.

MacPython OSA Librarys

These libraries support implementation of the Open Scripting Architecture (OSA)
for Python.

104

CHAPTER 9 ' LIBRARIES

aetools—OSA Client support

This library contains the basic functionality for the Python AppleScript client. Removed
in Python 3.x.

Aepack—Conversion between Python variables and
AppleEvent data containers

This library defines functions for converting Python variables to AppleEvent and back.
Removed in Python 3.x.

SGI IRIX Specific Services

Libries providing features unique to SGI's IRIX operating system versions 4 and 5.

gl—Graphics library interface

Provides access to the Silicon Graphics Graphics library. It is only available on SGI
machines and has been removed in Python 3.x.

al—Audio functions on the SGI

Provides access to the audio facilities of the SGI Indy and Indigo workstations. Has been
removed in Python 3.x.

Sun0S Specific Services

Provides libraries that are specific to SunOS 5 (aka Solaris version 2).

sunaudiodev—Access to Sun audio hardware

Provides access to the Sun audio interface. Has been removed in Python 3.x.

105

CHAPTER 10

Classes

Classes are the way that we create objects. We use objects to try to model the real world
in computer code. Objects are a way of encapsulating programming code that, not only
can be reusable, but can be duplicated and modified without affecting the original object.
Objects often have attributes and functions to modify those attributes. Classes also allow
you to write a group of code that may be used in multiple projects without rewriting or
copying the code into each project just like a library. We will concentrate on objects in
this chapter, all though the concepts are the same for simple classes.

What is an object?

When trying to explain what objects are, I like to use the example of a car. What is a car?
It’s a thing that has a body, a frame, an engine, a number of wheels, and more. The body
type, the frame type, the engine type, the number of wheels, the color of the body, and
other things are all examples of the attributes of the car. All cars have, for example, doors.
However, the number of doors can change from model to model of cars. Some have

two doors, some four, and some five (if you consider a trunk lid a door). We can create

a “generic” car (called an instance) and then for whatever type of car we want, we can
modify the attributes of that instance of a car to suit our own purposes. This is called
inheritance. The new “model” of car we create by modifying the attributes, inherit the
attributes of the parent.

Creating a Class

When we create a class, we use a class definition, very similar to a function definition. The
class definition starts at the first position on the line with the word ‘class’ and ends with
a colon. Any code lines within the class are indented. The first unindented line in code is
considered outside of (not part of) the class.

class ClassName:
{Any accessable class variables}
{initialization routine}
{Any functions you may need}

107

CHAPTER 10 © CLASSES

Here is an example:

class Car:
__init_ (self,attribi,attrib2):

def

pass

Functioni(self):
pass

def Function2(self):

pass

This is all fairly self-explanitory, with the possible exception of the word “self” in
each of the definitions of the functions. The word “self” refers to the fact that we are
using a variable or function within the specific instance of the class or object.

An Actual Example

Let’s look at an example of a class and an object created by that class. We will create a
class called “Dog”. The class will have the following attributes:

name (dogname)
color (dogcolor)
height (dogheight)
build (dogbuild)
mood (dogmood)
age (dogage)

class Dog(): # The class definition

def

108

__init_ (self,dogname,dogcolor,dogheight,dogbuild,dogmood, dogage):
#here we setup the attributes of our dog

self.name = dogname

self.color = dogcolor

self.height = dogheight

self.build = dogbuild

self.mood = dogmood

self.age = dogage

self.Hungry = False

self.Tired = False

CHAPTER 10 © CLASSES

Most classes (and object) have an initialization function. This is automatically run
when we create an instance of the class. To define the initialization routine, we name it
__init__ (that’s two underscore characters, followed by the word “init” followed by two
more underscores) and then the parameter list, if any, and finally a colon just like any
function we would normally write.

Within the initialization routine, we set up and define any internal variables or in this
case attributes. Notice that we are also defining two attribute variables called Hungry and
Tired that are not part of the parameter list. Normally, we would not “expose” or reveal
these to the outside world and would only allow the internal functions to change them.
In order to have variables or attributes hidden from the users of our objects, we start
the variable name with two underscore characters. An example would be __Hungry and
__Tired. However, because we are keeping things simple, we will expose everthing.

The functions within our class

Within the class we write functions just like any other function. We start the parameter list
with the self keyword. If you don’t use the self keyword, you will get some weird errors.
When we refer to any of the internal variables, we use the .self keyword. The following
three funtions are used to “tell the dog object what to do” Of course there could be many
more, but for this example, we’ll stick with these.

def Eat(self):
if self.Hungry:
print 'Yum Yum...Num Num'
self.Hungry = False
else:
print 'Sniff Sniff...Not Hungry'

def Sleep(self):
print 'Z77777777777777777777777777777777'
self.Tired = False

def Bark(self):
if self.mood == 'Grumpy':
print 'GRRRRR...Woof Woof'
elif self.mood == 'Laid Back':
print 'Yawn...ok...Woof'
elif self.mood == 'Crazy':
print 'Bark Bark Bark Bark Bark Bark Bark'
else:
print 'Woof Woof'

You can see that the code for these three functions is extremely simple.

The Eat function simply checks the Hungry attribute. If Hungry is True, then the dog
object “eats” and then sets the attribute to False. If not, it just prints its line.

109

CHAPTER 10 © CLASSES

The Sleep function simply prints snores and then sets the ‘Tired’ attribute
to False.

The Bark function walks through an if/elif/else statement and, based on the
mood attribute, prints something appropriate.

Using the dog object

The following line of code will create an instance of the class/object (also called
instantiation) and passes the correct information to the class initialization function, if
there is one. Notice that this is part of the “main” code, not part of the class.

Beagle = Dog('Archie', 'Brown','Short','Chubby',"'Grumpy',12)

We now have a dog object called “Beagle” As you can see, he’s (it's probably a he
because the name is Archie) brown, short, chubby, and grumpy. Now we use the object.
To access any of his functions or attributes, we use the object name (Beagle) followed by a
dot (.) and then the function name or attribute name.

In the next five lines of code, we are accessing his attributes.

print 'My name is %s' % Beagle.name
print 'My color is %s' % Beagle.color
print 'My mood is %s' % Beagle.mood
print 'I am hungry = %s' % Beagle.Hungry

The last four lines of code will have him do things or, in the case of the second line,
make him hungry.

Beagle.Eat()
Beagle.Hungry = True
Beagle.Eat()
Beagle.Bark()

When we run this program, we get the following output:

My name is Archie

My color is Brown

My mood is Grumpy

I am hungry = False
Sniff Sniff...Not Hungry
Yum Yum...Num Num
GRRRRR. . .Woof Woof

110

CHAPTER 10 © CLASSES

Going Further

We can extend this example by creating multiple instances of the Dog class. After the line
that we initialize the Beagle object, replace all the following lines of code with these lines:

Lab = Dog('Nina', 'Black’, 'Medium', 'Chubby','Laid Back',8)
Shepherd = Dog('Bear', 'Black','Big"','Skinny', 'Crazy',14)
Lab.Hungry = True
print 'My name is %s' % Beagle.name
print 'My color is %s' % Beagle.color
print 'My mood is %s' % Beagle.mood
print 'I am hungry = %s' % Beagle.Hungry
Beagle.Eat()
Beagle.Hungry = True
Beagle.Eat()
Beagle.Bark()
print 'My name is %s' % Lab.name
print 'My mood is %s' % Lab.mood
if Lab.Hungry == True:
print 'I am starving!'
Lab.Eat()
Lab.Sleep()
Lab.Bark()
else:
print 'No...not hungry.'

This creates two more Dog objects. One is called Lab and the other Shepherd, which
along with the Beagle object, makes three. Running the code results in the following
output:

My name is Archie

My color is Brown

My mood is Grumpy

I am hungry = False
Sniff Sniff...Not Hungry
Yum Yum...Num Num
GRRRRR. . .Woof Woof

My name is Nina

My mood is Laid Back

I am starving!

Yum Yum...Num Num
227727277277277277772772777777777
Yaun...ok.. .Woof

Obviously, there is much more you could do with this example. However, we will
move on.

111

CHAPTER 10 © CLASSES

Something Real

Now we'll concentrate on something that is useful. We'll create a class that queries the
WeatherUnderground website and get the current weather conditions for any given
location in the United States by using the Zip Code. Before we go any further, let’s layout a
series of requirements for the class:

e Gets the current weather conditions

e Gets the Current Temp

e Gets the Current Barometric Pressure

e Gets the Relative Humidity

e Gets the Current Wind direction and speed.

¢ Runsin a Command Window (Windows) or Terminal (Linux)
Now we should look at the process that the program will perform:

1. Get the Zip code.

2. Instantiate the class, pass the Zip code to the class.

3. Open asocket to the URL of the website and get the
information in the form of an XML file.

4. Parse the returned XML file pulling the information we need.
5. Print the information from the parse process.

Before we can code, we need to know what information the website will give us.

Reviewing the Information

The XML file is too large to print here, so I will just give a partial dump of the XML data.
The elipses denote that there is more data that has been cut for the sake of brevity.

<current_observation>
<credit>Weather Underground NOAA Weather Station</credit>
<credit_URL>http://wunderground.com/</credit URL>

<display location>
<full>Aurora, CO</full>
<city>Aurora</city>
<state>CO</state>
<state_name>Colorado</state_name>
<country>US</country>

</display location>
<observation_location>

112

http://wunderground.com/

CHAPTER 10 © CLASSES

<full>Aurora, Colorado</full>
<city>Aurora</city>
<state>Colorado</state>
<country>US</country>

</observation_location>

<station_id>KBKF</station_id>

<observation_time>Last Updated on November 14, 12:55 PM MST
</observation_time>

<weather>Partly Cloudy</weather>
<temperature_string>54 F (12 C)</temperature_string>
<temp_f>54</temp_f>

<temp_c>12</temp_c>
<relative_humidity>41%</relative_humidity>
<wind_string>From the SSW at 5 MPH </wind_string>
<wind_dir>SSW</wind_dir>
<wind_degrees>200</wind_degrees>

</current_observation>

Asyou can see, there is a huge amount of information given to us and much of it we
won't use. The items of interest are:

—y

2
3
4,
5.
6
7

<full> for the location text.

<observation_time> for the time of the readings.

<weather> for the current conditions (partly cloudy, clear, etc.).
<temperature_string> for the temperature.
<relative_humidity> for the humidity.

<wind_string> for the wind direction and speed.

<pressure_string> for the barometric pressure.

If you are not familiar with XML data, I'll give you a VERY quick tutorial.

XML Refresher

XML is one of a number of markup languages that are based on HTML. XML works on the
concept of tags, text and attributes. A tag works like the key in the dictionary key/value
pairs (see Chapter 6) and the text is the value of the pair. If there is data for a tag, there will
be an opening tag and a closing tag. The closing tag is exactly the same as the opening tag
except it will start with a slash. It will look like this:

<tag>text</tag>

113

CHAPTER 10 © CLASSES

Where the </tag> is the end tag. An attribute is something that is part of the tag and
contains extra information. In what we are dealing with in this code, we don’t have to
worry about attributes in an XML file. In the above example data, when we look for the
<weather> information, we are looking for the tag <weather> and the text is ‘Partly Cloudy’

Time to Code. ..

Now that we know what we are looking for, we can start our coding.

Import the Libraries
We will start by importing the libraries that we need:
from xml.etree import ElementTree as ET

import urllib
import sys

All three libraries are standard libraries that come with the normal Python
distribution.

Create the Class

Next we need to create our class. It will be named 'CurrentInfo' and will contain three
functions. In order, they are:

e getCurrents—Does the web access and parsing of the XML data
e output—does the printing to the terminal window.

e Dolt—calls the above functions in the proper order.

Although I stated earlier that most classes have an initialization function, this class
won’t have one, because in this case there is really nothing to initialize. We’ll start with
our class definition and the first function:

class CurrentInfo:
def getCurrents(self,debuglevel,Location):

There are three parameters for the getCurrents function. The self parameter won't
take an argument or data. The debuglevel is either a 0 or 1 and is there to be a flag to
print debugging information or not. Location is where the Zip code is passed into the
function. Next, we check to see if the debug mode is turned on and if so, we print the
location Zip code that was passed into the function:

if debuglevel > o:
print "Location = %s" % Location

114

CHAPTER 10 © CLASSES

Connect to the Website

Next we attempt to connect to the WeatherUnderground website to get the XML data.

We do this using the try/except error handling set. This is in case we have no Internet
connection or the website doesn’t respond in a timely manner. After the try keyword, we
set the variable called CurrentConditions to the website URL and include the Zip code at
the end:

try:
CurrentConditions = _ 'http://api.wunderground.com/auto/wui/geo/
WXCurrentObXML/index.xml?query=%s' % Location

Now we set the default timeout for the connection to 8 seconds, and open a socket to
the URL we set up using the CurrentConditions variable. If there is no error, we tell the
XML parsing routine to grab the XML data from the socket, and then we close the socket:

urllib.socket.setdefaulttimeout(8)

usock = urllib.urlopen(CurrentConditions)
tree = ET.parse(usock)

usock.close()

If there was an error, then we print an error message to the terminal window, and
if the debug mode is set to True, we print the location and use the exit routine from the
sys library to terminate the program. The number 1 in the sys.exit(1) line says that
there was an error that caused us to terminate early. Usually the code 0 means everything
worked well, code 1 means “something weird happened,” and 2 means a command line
error occurred.

except:
print 'ERROR - Current Conditions - Could not get information
from server...'
if debuglevel > o:
print Location
sys.exit(1)

Now, we are assuming that everything has worked correctly and the parser has
gotten the XML data. I'm going to explain the first two parsing commands because all
of them are the same except what we are looking for and the variables we assign the
data to.

The getCurrents function

The first line (for loc in tree.findall(".//full":)tells the XML parser to look for
the tag named <full>. Every tag with that name is pulled into a list named 'loc". For each
and every item in the list, we assign that item text to the self.location variable. In the
case of this data, there are many <full> tags, but they all hold the same data. In the next

115

http://api.wunderground.com/auto/wui/geo/WXCurrentObXML/index.xml?query=%25s
http://api.wunderground.com/auto/wui/geo/WXCurrentObXML/index.xml?query=%25s

CHAPTER 10 © CLASSES

one, we want to get the observation time. Just in case there is more than one instance,
we use a for loop to assign the text to the self.obtime variable. Here is the code for this
section:

Get Display Location

for loc in tree.findall(".//full"):
self.location = loc.text

Get Observation time

for tim in tree.findall(".//observation_time"):
self.obtime = tim.text

Get Current conditions

for weather in tree.findall(".//weather"):
self.we = weather.text

Get Temp

for TempF in tree.findall(".//temperature_string"):
self.tmpB = TempF.text

#Get Humidity

for hum in tree.findall(".//relative humidity"):
self.relhum = hum.text

Get Wind info

for windstring in tree.findall(".//wind_string"):
self.winds = windstring.text

Get Barometric Pressure

for pressure in tree.findall(".//pressure_string"):
self.baroB = pressure.text

That’s the end of the getCurrents function. Now we will work on the output
function.

The Output Function

This simply prints the information that we have pulled from the XML file into a “human
friendly” format in the terminal window:

def output(self):
print 'Weather Information From Wunderground.com'
print 'Weather info for %s ' % self.location
print self.obtime
print 'Current Weather - %s' % self.we
print 'Current Temp - %s' % self.tmpB
print 'Barometric Pressure - %s' % self.baroB
print 'Relative Humidity - %s' % self.relhum
print 'Winds %s' % self.winds

116

http://wunderground.com/

CHAPTER 10 © CLASSES

The Dolt function accepts one parameter, the location Zip code. It then calls the
getCurrents function with (in the code below) the debug mode turned off and the
location. Then it calls the output function:

def DoIt(self,Location):
self.getCurrents(0,Location)
self.output()

That ends our class. It was very simple, but gives you a good idea how easily a class
can be created.

The Main Function

The next bit of code is the main function. Again, it doesn’t do very much for this
particular program, but it gives a starting point for our program. The first line will assign
the Zip code to the location variable. The second line will create an instance of our class.
Ifithadan _init__ function, that would be called automatically when the class instance
is created. Finally we call the DoIt function to start the whole thing off:

def main():
location = '80013'
currents = CurrentInfo()
currents.DoIt(location)

Add the Program Entry Point

The last thing we will do is add the program entry point. We use the two lines starting
withif _name__ and ending with main(). There are two built-in variables that Python
handles for us. The firstis __name__ (that’s two underscore characters, the word ‘name,
and two more underscore characters). The other is just like the one we just described
butis __main__(again two underscores, the word ‘main; and two more underscores).
When you start a Python program from the command line, the __name__ variable is set
by Pythonto __main__, so the interpreter knows that it is supposed to call the main()
function. However, because we created a class that does all the work, we can actually treat
this as a library and import the CurrentInfo class into another program. In that case, the
main() function will not be run, because __name__ willnotbe _main__ but the name of
the program calling it.

fos===s=s=—=ss——sooosooossoossooosooosssossooosooosooosooooms
Main loop
#zs===s=========sss=ssssssssssssssssssssss=sssssssssssss=sssoas
if name ==" main "

117

CHAPTER 10 © CLASSES

The output from our program class is as follows:

Weather Information From Wunderground.com
Weather info for Aurora, Colorado

Last Updated on November 14, 12:55 PM MST
Current Weather - Partly Cloudy

Current Temp - 54 F (12 C)

Barometric Pressure - 29.86 in (1011 mb)
Relative Humidity - 41%

Winds From the SSW at 5 MPH

As an aside, I have tested the source code by changing the location variable data
from ‘80013’ to ‘W11 2BQ: Everything worked as expected.

118

http://wunderground.com/

Index

A

Arithmetic operators, 13
Assignment operator, 17

B

Bitwise operator, 20
break statement, 46

C

Classes
Bark function, 110
Beagle object, 110-111
class definition, 107
CurrentConditions, 115
CurrentInfo; 114
debuglevel, 114
Eat function, 109
exit routine, 115
getCurrents function, 114-116
information reviewing, 112-113
initialization function, 110
libraries importing, 114
location, 114
main function, 117
object, 107
output function, 116
Program Entry Point, 117-118
self keyword, 109
sleep function, 110
Time to Code, 114
try/except error, 115
WeatherUnderground

website, 112

XML Refresher, 113-114

Conditional statements
break statement, 46
continue optional statement, 47
else statement, 47
for loop, 44-46
IF/ELIF/ELSE statements, 43-44
pass statement, 47
while loop, 48

D

Data structures

ColorList variable, 49

dictionary
blank dictionary, 56
.clear() method, 57
.copy() method, 57
dict(list) function, 57
.get(keyl,default]) method, 57
.has_key(key) method, 58
information, 55
.items() method, 58
.iteritems() function, 56
keys() method, 58-59
len(dictionary) function, 56
.pop(key[,default]), 59
.setdefault(keyl,default]), 59
update(other) method, 59
.values() method, 60

digging, 49

list functions
array, 50
del(L[x]), 53
for loop, 50
L1+1L2,52
len(L) functions, 51
L[x1\:x2], 52

119

INDEX

Data structures (cont.) variables, 87
L[x] function, 52 output, 88
max(L), 51 return a value, 89
min(L) function, 51 using global keyword, 88-89
MyList, 50
variable t, 51 I J
x in L function, 52 ’
xnot in L function, 52 Interactive Shell
list methods code, 2
.append(x), 53 commands, 2
.count(x), 55 comments, 4
.extend(L), 53 decoding the code, 3
.index(x), 54 Linux, 1
.insert(i,x), 53 multiline statements, 2
.pop([i]), 54 windows, 1
remove(x), 54
.reverse() method, 55 K
.sort() method, 55
set functions, 61 Keywords
set methods and keyword, 68-69
.add(item), 63 as keyword, 69
.clear() method, 62 assert, 69
.copy() method, 62 break loop, 70
.difference(set), 65 continue keyword, 70
.difference_update(set), 64 def function, 71
.discard(item), 63 del keyword, 71
frozensets, 66 elif statement, 72
.intersection(set), 65 else statement, 72
.intersection_update(set), 64 escape sequence, 82
.issubset(set), 64 except keyword, 72
.issuperset(set), 65 execution, 73
.pop() method, 62 False, 81
.remove(item), 63 finally keyword, 73
.symmetric_difference(set), 66 for loop, 73
symmetric_difference_ from keyword, 74
update(set), 64 global variable, 74
.union(set), 65 if statement, 75
.update(set), 64 import, 75
tuples, 60 in keyword, 75
is keyword, 76
E lambda function, 76
Misc.class, 70
enumerate() function, 46 none keyword, 81
nonlocal, 82
F G H not keyword, 76
1 D or keyword, 77
Functions pass, 77
optional parameters, 86-87 print keyword, 77
python program, 90-91 Python 3.x, 67
structure of, 85 raise, 78
TestFunction, 86 return, 78

120

true keyword, 81
try keyword, 79
while keyword, 79
with keyword, 80
yield, 80

L, M

Libraries

2.x source code, 101
Aepack, 105
aetools, 105
cryptographic services, 96
Custom Python Interpreters, 102
data compression and archiving, 95
data persistance, 95
data types, 93-94
debugging and profiling, 101-102
file and directory access, 94-95
file formats, 96
Generic Operating
System Services, 96-97
graphical user interfaces with Tk, 101
Internationalization, 100
internet data handling, 98
internet protocols and support, 99
interprocess communication
and networking, 98
Mac OS X, 104
msilib, 103
multimedia applications, 100
numeric and mathematical, 94
online help system, 101
Optional Operating system
services, 97
password database, 104
POSIX system calls, 104
program frameworks, 100
pydoc—Documentation
generator, 101
Python Language Services, 103
Python Runtime Services, 102
runpy, 103
SGI's IRIX operating system, 105
String services
re—Regular expression
operations, 93
string—Common string
operations, 93
StringlO—Read and
write strings, 93

INDEX

structured markup
processing tools, 98-99
SunOS 5, 105
terminal control functions, 104
unittest, 101
_winreg, 103
winsound, 104
zipimport, 103

Logical operator, 18

N

next() statement, 80

(0

Operators

arithmetic, 13

assignment, 17

bitwise, 20

logical AND, 19

logical NOT, 19

logical OR, 19
membership/identity operator, 19
precedence, 23

Python comparison operator, 15-16

P QR

pickle—Python object

serialization, 95

pprint—Data pretty printer, 94
Python program, 90

S, T,U

socket—Low-level

networking interface, 98

sqlite3—API interface, 95
Strings

assignments, 25
functions
len(), 25
max(), 26
min(), 26
slins2, 26
sl notin s2, 26
sl +s2, 26
single character, 27
s[x1\:x2], 27
s[x1\:x2\:x3], 27

121

INDEX

Strings (cont.) str.rstrip([chars]), 36
methods str.splitlines (), 36
startswith()and endswith(), 36 str.strip(), 37
str.capitalize(), 28 str.swapcase(), 37
str.center(width[fillchar]), 28 str.title(), 37
str.count(sub|,start[,end]]), 28 str.translate(), 38
str.decode([encoding str.translate(table
[,errors]]), 28-29 [,deletechars]), 37
str.encode([encoding|,errors]]), 29 strupper(), 38
str.endswith(suffix str.zfill(width), 38
[,start[,end]]), 29 translate method, 34
str.expandtabs([tabsize]), 29 print statement, 38
str.find(substring[,start[,end]]), 30 Python 2.x formatting, 39-40
str.format(*args,**kwargs), 30 Python 3.x formatting, 40-42

str.format_map(mapping), 30

str.index(substring VWX,YZ
y] y Iy

[,start[,end]]), 30

strisalnum(), 31 Variables

str.isalpha(), 31 assignment, 6
str.isdecimal(), 31 Camel Casing, 5
str.isdigit(), 31 case-sensitive, 5
str.isidentifier(), 32 data type conversion
str.islower(), 32 ascii value, 10
str.isprintable(), 32 character, 10
str.isspace(), 32 complex number, 9
str.istitle(), 32 floating point, 8
str.isupper(), 33 frozenset, 10
str.join(iterable), 33 hexadecimal string, 11
str.ljust(width[fillchar]), 33 integer base, 8
str.lower(), 33 long integer base, 8
str.Istrip([chars]), 34 octal string, 11
str.partition(sep), 34 sequence], 10
str.replace(old,new[,count]), 34 unicode character, 10
str.rfind(subl[,start[,end]]), 35 dictionary, 8, 10
str.rindex(sub|,start[,end]]), 35 lists, 7, 9
str.rjust(width[fillchar]), 35 numeric data type, 6
str.rpartition(sep), 35 string data type, 7, 9
str.rsplit([sep[,maxsplit]]), 35 tuples, 7,9

122

The Python Quick
Syntax Reference

Gregory Walters

Apress’

The Python Quick Syntax Reference
Copyright © 2014 by Gregory Walters

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions

of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6478-1
ISBN-13 (electronic): 978-1-4302-6479-8

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

President and Publisher: Paul Manning

Lead Editor: Jonathan Hassell

Developmental Editor: James Markham

Technical Reviewer: Michael Winiberg

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,
Jim DeWolf, Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman,
James Markham, Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick,

Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Steve Weiss
Coordinating Editor: Jill Balzano

Copy Editor: Laura Lawrie

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM
Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www. apress. com. For detailed information about how to locate your book’s source code,
g0 to Www.apress.com/source-code/.

http:\\orders-ny@springer-sbm.com
www.springeronline.com
http:\\rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

This book is dedicated to Carol, Douglas, Kirsti, Andrew and Trey . . .
My family and my world.

Contents

About the AUthorccccumimmmmemmmmss s —————— XXi
About the Technical ReVIEWETccusesssmsssassssassssnsssanssssssssnsssansas Xxiii
Acknowledgments.......ccccernsnsssssssnnsmmmssssssssssssnsssesssssssssssssnssssssssnns XXV
Introduction.........ccccnnmmmimmmmmm s ————— XXVii
Chapter 1: Hello Python..........cccunemmmmmmnnnnmmmmssssssssnnnnsmmssssssssssns 1
Python’s Interactive Shell............occorreenceree e 1
0] 10T P2 Lo 2
Multiling STateMENtSc.coceeeerercrerereresere e 2

B3T3 o TN 2
Decoding the COUEccvverververrerrerrrer s sne e 3
COMMENTS ... s 4
Chapter 2: Variablescccceurrrrmmmmmmssssssssnmnmmsmmsssssssssssssssssssssssssssssnnss 5
Case SenSItiVILccccrrerrierierniere s s 5
Proper Variable Naming...........cccvcvrrvenrensnsensesses s sesses s s s snssessnsnnns 5
ASSIGNMENT ... e sa e e n s 6
DAta TYPESererererere s r e n e nn e nnnnan 6
NUMEBKIC .ttt 6

IS (11 TSRS 7

I 7

LT OSSN 7

DT 0] 8

vii

CONTENTS

Data Type CONVEISION........c.cceeerrerrersessessesses s sesses e s e se s e s s s s s e s snssnssnnnnnns 8
INE(S,[DASE]). .o ettt 8
10NQ(S,[DASE]) ...ecueernrneererrreeri s 8
L1 0T 8
complex(real [,imaginary]).......cccoeeeerererresesesesssesesesssss e sss e sssssssssnes 9
[O 9
LT T (=T T 9
1T () TS 9
T () T 10
dict(s) (s must be sequence of (key,value) tuples)..........cccceurrverrrriescrerercseserennns 10
FTOZENSBE(S) . eueueerereecrererie et 10
(1111 OO 10
UNICAI(X).cveuteuerreerresessesere s srs s se st e e e a s s ae e s e s e s b s b e e Re e Re e s aesn e e ne e ns 10
(0] 0 () TP 10
NBX(X) cveerrerererrnesrese st e s e r e e e e R AR e e e R R e R e e 11
OCE(X)ueureuerrenerrenersesersesesesse s se st s e e s s e et ae e re e e ae e e R e e e R e e R e e e Re R e e R e e Re e Re e e Rennnaeas 11

Chapter 3: Operatorscccueemrmmssnnnmmssssssnssssssssnssssssssssessssnsnsssssnns 13

Arithmetic OPeratorscoceeeeeeerere s e 13
e AU (011 (o 13
11101 e (o] OO 13
Bl 0 T 1o S 13
LD 1T T 14
Yo MOUUIUS ...ttt bbb s 14
Bl = (10 1 [T 1| SRS 14
/1 FlOOF DIVISION ..ot cse e se s sn s 15

Comparison OPerators..........coceveeereressesesse s sessssssssssses 15
S 15
== (SIMNQS) crrveeerrrreereresrssese s ae e e nns 15

viii

CONTENTS

o rteee s b s bbb AR AR AR AR AR R R 16
K ertrresrses s eSS eAe R RS R e AR R R e R e e eRe e e Ae e e Re e e e e e Rnres 16
D> terreesreseereseeesEeenEeeeEeEeEeEeESEeESaEeESeESESESELESEREe R RS aE SRR eEnEnEe e eEenEeAenE e e e e e nan e anres 16
S 16
DS 16
o ttttttr st s e e e e R e SRS SRS A SRS RS RS eA e RS eReeRenEeeR e R e R e nRenEenEenRenrenaens 17
Assignment OPerators.........cocovcceerirrernsesesessess s sessesse s ssssessesessens 17
E eueetuueeesueeesseeeRseetsueeeR e LRSS e RS LRSS RS AR £ R R RS 17
o et E RS RS e RS R AR R e Re R e e R e e Re e Re R e Re R e e Re e ns 17
o eetuueeerureesueeeR et R e e RS R R R AR e RS e RR AR R e R e 17
®I ¢ oetuueeeeueeeesseeeeseeetsueeeEeeERue AR SRR RS RS RS LR AR R RS 17
J2 eereeeeereses s R RS A R 18
G0 wrvvueerssesssseessseessaesssses s s s e a eSS R R 18
e 18
Lo e ————————————————— 18
Logical OPeratorscccceeeerereesressesee e ssesse s e ssssne s snesns s s s s 18
AN oo e e e ne e e e e e aae s 19
0] 19
110 OSSOSO STSSTSTSTRRRN 19
Membership and Identity Operators..........ccoceverrrerrrnrsssss e 19
[N ceeeeeeseeesseeesseessseeessnessseessssnss s ss s eSS 20
10 20
1S e teerserersesr s e rr e e s s e s e n e R e E R e R e e Re e nRe R e e R e e Re e RenEnRe e e Rn e e e R e Ees 20
53040 PSSRSO 20
Bitwise OPerators.........ccceverererierensesesssse s e sasesnes 20
&L eeettee et bR RS R RS R R R SRR 21
| eeeeeseeesusesssseessssessssses s s s R R RS R R AR AR R AR R 21
PN et RS R AR AR AR AR R 22

ix

CONTENTS

N ereeeere AR R AR AR AR AR AR R R AR R 22
K< tttrterserse e e A e SR e SR e RS eR e A SRS RS RS eRe RS eR e RS eRe R e eE e e R e R e nRenRenRenEenRenrennens 22
> > iieeeee e e e e e e e eSS A SRS eA e Re e A e e A e RS e R e R e eE e e R e A e R e nRenEenEenRenrenaens 22
Precedence of Operators...........cecvernsresensesssessesss s sessesss s sessesnes 23

Chapter 4: Strings........cccinnnemmmmmnsssmmmmsssnmmssssnsssssssamm. 29

Appending t0 SHNGS.....c.cccrererererereserese s sss s e ssssenens 25
StriNG FUNCLIONS ...t 25
1] 3 ST 25
11111 SO S 26
11TV TS 26
) I KPS 26
ST NOLIN S2..c e 26
ST 2 e e s 26
. PSP 27
) ¢ PSP 27
SIXTIX2IX3] ceeeererreeese st 27
String Methods........ccvvereerierrrr e 28
Yo7 0] =2 (R 28
str.center(Width[Lfillchar])cccceveerrrere s se e ranaens 28
str.count(sub[,start[,end]]) ... ———————— 28
str.decode([enCOdiNg[,errOrS]]) ... euerrerseesresressessesssessessessesssessessessssssessesssssesseeas 28
str.encode([enCOdiNG[,errOrS]])eeeseuerserseesresresessmsssessessessesssessessessssssessesssssssseens 29
str.endswith(suffix[,start[,end]])ccceerrererrererrerrrerrrere e raesesseresaerasaens 29
str.expandtabs([tabSIZE])cevererrerrrererererererereres e rae e rae e se e e sanaens 29
str.find(substring[,start[,end]]).....c.cccoerrerrrerrierrrerr e 30
SHLOrmMat(*args, * KWargs).......cccerrereererrerererersersrsersssessesessessssessssessssessssessessssesassens 30
str.format_map(mapping) Python 3.X OnlYcccecererererererererersereerereseseserserennens 30

strindex(substring[,start[,end]])ccoeeererrrerrrerrrerr e 30

CONTENTS

YA o7 T T K
Y A T 1] 1 - R K
strisdecimal() PYthon 3.X ONIY ..o sesaerenaens 31
Y1 T T 31
strisidentifier() Python 3.X 0NlY.........ccveererererrc s seesesaesessesessesanaens 32
CeY 1[0 32
strisprintable() Python 3.X Only ... 32
CeY A T 07 o (O 32
oY1) S 32
SILASUPPEI() c.veereerererrerererererereressessesessesessessssessssessessssesassesassessenessensssesassesssnessenens 33
CeY (0T (10T = Lo [33
C A VR (L0 LTI 111 =T | 33
C 08 [0TSR 33
CY A Y o T o =) 34
str.maketrans(x[,y]]) Python 3.X only ... 34
CeY e o L 10 (T o) 34
str.replace(0ld,NEW[,COUNL]).......ccerrerrerrerreeeeeseesesressesese s sessessessenes 34
str.rfind(sub[,start[,end]])cceveererererrerre e 35
str.rindex(sub[,start[,end]]).....ccccceererrerrererrerrrere e saeees 35
e VR L0 LTI 11 = T 35
CY 7= T (T4 o) 35
Strrsplit([SEp[,MaXSPIIL]])..eeererrerereriererrererrersrrerenererereraseraesesesessesessesassessesesseens 35
L (A Y 0T (o 1 | 36
str.split([Sep[,MaXSPIE]])..corrererrerereriererererreresererererer e ras e rae s e e s e ses e sassesaeessenens 36
Str.SplitlineS([KEEPENAS]) ...coeruererererrereeerererserereres e raeessesessesessesassesassessensssesessesanas 36
str.startswith(prefix[,start[,end]])ccoeeerrererrerrrerrrerererere s resereens 36
Y L] (0T [1) 37
SIT.SWAPCASE() c-reurerereresressessesseseesessessessensessessssessessessenssssssessessessenssssssessessessensesesses 37
11 1 R 37

xi

CONTENTS

str.translate(table[,deletechars]) PYthon 2.X.....ccccccvverererererenesereressseneressssesererenes 37
str.translate(table) PYthon 3.X......ccecevrrrercrrens s sevevesseseressssssesesessssesesesenes 38
C LT o]0 1=] TSSOSO 38
STLZAIWILEN) c.vvevovoeeeeessseeeesseesesssssessessssessessssssessessssssssssssssssssssssssssssssesssssssans 38
Print Statement ... 38
Python 2.x String Formattingccoccevvrnnnicnnscres e 39
Python 3.x String Formatting ..o 40
Chapter 5: Conditional Statements..........cccoovvemmmmmnnnnnnnnssssssssnnnn. 43
IF / ELIF / ELSE Statements.........c.coococverrenersnesesssesesssesessssesesssesesnenes 43
FOF e ————————————— 44
BrEaKcoeiereirerie et 46
00011 T 47
EISB.cee e ———————— 47
PSS, ———————————————— 47
L L1 48
Chapter 6: Data Structures.......c..ucccnnmnsennmnnsssssnmmnssssnmmssssnmnna. 49
Data Structure EXampleccccevcvievininnierse e ssesssessss e sssssesssesaenns 49
Digging DEEPET.......cceecercercerrr s 49
I £ RS SR 50
LiSt FUNCLIONS ...ttt 51
LiSt MEthOdSccoeieeeeere st 53
DICHIONAIIES ... 55
Dictionary FUNCHIONS..........cccerereeercrere et re e re e ree e ae e sae e saesas e sassees 56
Dictionary Methods.........cccccveverrrererre e se e sa e sae s 57
LT 0] S 60

xii

CONTENTS

SBIS i ———————— 61
Set FUNCHIONS......cvi i ———— 61
SEEMETNOAS ... ———————— 62
FIOZENSEIS ...t 66

Chapter 7: KeyWordsccuusmsmmmsssmssssssssssmssssssssssssssssnsssssssssnsnsnnas 67

List of Python Keywords.........c.cccecrververnnrcenne s sessee s snesaens 67

Keywords EXplAINedccoceerriernnriennsesessssessssssesessessesessesssssssessssesnes 68
AN, ————————————— 68
L 69
ASSBIT..cucricrsie e 69
DIEAK ...ttt —— 70
ClASS oottt ———————————— 70
(0] 11T 70
) 71
0L P Al
T 72
IS et ———————————————————— 72
BXCBPE e ————————————————————————— 72
) (< 73
L1 L1 PSPPSR 73
(0] PP 73
L0 11T 74
010} o 74
| OSSR SSTRS R 75
71770 T 75
1 75
T 76
1AMDAA. ... ———————————— 76
NOE o —————————————————————————— 76

CONTENTS

0] SR 77
PSS vuveureeseeseesessessesseesses s s s s 77
0 1 77
- 78
FEREUIM e 78
Ty e ————————————————————————————————— 79
WHIHIB ...ttt r s a s s nea s nnnernnnrnnnnnnas 79
T 80
7121 o 80
FAISE ...t ———— 81
NONE .. ———————————————— 81
TTUC o ———————— 81
NONIOCAeeeevceeeeeseesessessesseesses s s s ses s s s s s 82
ESCAPE SEQUENCEScovrererererer e s e sas e 82

Chapter 8: FUnctionsccccnmmmmssmmmmmnnmnmmmmssssssssnssssssssssssssnssns 89

Structure of @ FUNCHON........c.ooreeee s 85
Returning Valuescccvcvvrcercrsirsr s 86
Optional Parameters.......ccoevcerreerierseerierseesessseseessesssessessessessesassssesaees 86
Variables in and out of FUNCLIONS..........ccconiinnnicnn s 87
e 111][I OSSR 87
e 111][RR 88
Anatomy of @ Python Program...........ccccceeeeeeenenecsseess s 90
Chapter 9: LIDrariesccccuusessmmssssssssmsssssssssssssssssssssssssssssssssssssssnns 93
SErING SBIVICESeeveeeereie e sn e sr e nenn 93
string—Common string OPerations..........cccovrrierninnrnesre s 93
re—Regular expression 0Perations............c.ocoeererererneseseseseseseses s seseseens 93
Stringl0—Read and write strings as files.......c.occoerreceenrecee e 93

xiv

CONTENTS

Data TYPEScvererererse s n s 93
datetime—~Basic date and time types........cccorreinrrececn s 94
sets—Extends the set capabilities of Python............c.oooooeennee 94
pprint—Data pretty printer....... e ———— 94

Numeric and Mathematical Librarys...........cccoveervenniriennscnesnssenensennes 94
numbers—Numeric abStract base Cass..........coovererererererererereneserese e 9
decimal—Decimal fixed point and floating point arithmetic............ccccecvvvvcrcrnnnne 94
math—Mathematical fUNCHONS...........cccooeirerercrererereee s 94
random—~Generate pseudo-random NUMDETScccvvererereneseseresesesesessssesesesenns 94

File and DireCtory ACCESS........ccvverrerriirrenirsee s e sses e ses e sesssessesssens 9
os.path—Common pathname manipulations............ccocvererrrererrersserereresererenens 9
fileinput—iterate over lines from input streams.........c.cocvvnnnnnnnn. 95

Data PersiStance ... 95
pickle—Python object serialization..............ccocorreverrnicicsrer s 95
anydbm—~Generic access to DBM-style databases..........c.cooeoeeererriencnerercsescnennns 95
sqlite3—API interface for SQLite databases.........ccccervvrrrrerniernscrncse e 95

Data Compression and Archivingccoeeevseresessesnsessessssessssssesessenns 95
zlib—Compression compatible With gzip.........ccoceeeevneiescnnnnesessse s 95
gzip—Support for gzip fileSccccrrrrrererrresere e 95
bz2—Compression compatible with bzip2............cccevvrieccrrnsserrerer s 95
zipfile—WOork With ZIP arChivesccovvesensnenesessssssssesssssssesesssssesessssssssessssnns 95

File FOrmMatsccoviininicnscs e 96
csv—CGSV File Reading and WIiting..........coovverererierensereserssseseressessssessssessssessesesaens 96
ConfigParser—Configuration file Parserccocecveevveververessereeserssessssesesesesssens 96

CryptographiC SErVICESccerererrerrerrerre e e 96
hashlib—Secure hashes and message digest algorithm.............cccooooevrrrieicnnnne. 96
md5—MD5 message digest algorithm ... 96
sha—SHA-1 message digest algorithm.............ococoieceennee 96

XV

CONTENTS

Generic Operating System Services........cccovverereresesesessseses e see e 96
os—Miscellaneous operating system interfaces.cocoerverenrriescsensesescsennns 96
io—Core tools for working with streams.........cccccocevvevrirncnn s 97
time—Time access and CONVEISIONS ... 97
argparse—Parser for commandline options, arguments, and subcommands....... 97
curses—Terminal handling for character displaysccooeveenrrnencsenericscscrennns 97
logging—Logging library for Python ... 97

Optional Operating SyStem SErviCescoumrmrmseresrsseressesessssessnsenns 97
TNFEAMINGvveeccer e r e n e 97
Multiprocessing—Process-based “threading” interfacecccoeeeveevrcererccrennenn 97
readline—GNU readling interfaceococooeeerenenenenenenererese e 97

Interprocess Communication and Networking.........ccoeeevveveerenrensensennns 98
socket—Low-level networking interface..........cocvvvrrnvnrnnnsn s 98
sSI—TLS/SSL wrapper for Socket 0hjECtS.......ccvvvevrverrrrerere e 98
popen2—Subprocesses with accessible 1/0 streams.........c.ccvvvevevevererserensereesenns 98

Internet Data Handlingcccoeeeeeeeccccce e 98
email—An e-mail and MIME handling package..........ccccoeermrernnernnesesensesnssessnnens 98
json—lightweight data interchange format based on a subset of JavaScript....... 98
uu—Encode and decode uuencoded files...........cococevririncnssinnississc 98

Structured Markup Processing TOOIS.........ccoovverenereressesessssessssessessssenns 98
HTMLParser—Simple HTML and XHTML ParSercccuoueererereseseressssesesessssesesensnns 98
htmllib—Parser for HTML dOCUMENTS.........cccoeierenerererecereese e 99
xml.etree.elementtree—ElementTree XML API ... 99
xml.dom—The Document Object Module APIccoeceevrnrerererrseseseressesesesens 99
XMI.SaX—Support for SAX2 PArSErS.......ccoueurererrresesessssssssessssssssesessssssesessssssssessssnns 99

Internet Protocols and SUPPOM..........cccovervrrncr e 99
webbrowser—Convienient Web-browser COntroller ... 99
cgi—Common Gateway Interface SUPPOItccccvrverererererrererseresrersesersesessesenaens 99

xvi

CONTENTS

urllib—Open arbitrary resources by URLccecvererereriererrereerereesereesessesesseressenes 99
urllib2—extensible library for opening URSScccoverrverercererererereesereresereeenns 99
poplib—POP3 protocol CliENtccveeercerrrererere et rae s 99
Multimedia SErviCeS........c.currmnenerire e 100
audioop—Manipulate raw audio data...........ccceverrrrrnnnnn e ——— 100
wave—Read and write WAV fileS ... 100
Internationalization ... 100
gettext—Multilngual internationalization SErvicesccocorrverererresererennnenes 100
locale—Internationalization SErviCes..........c.cuurnnnninsnnenssesesse s 100
Program Frameworks.........ccccucevverneriennessessessee s seessessse e ssnesessnesnes 100
Cmd—Support for line-oriented command interpreters.........ccoeevvvervrereererenenees 100
shlex—Simple lexical aNalYSiS.........ccccvrrererrererererererereresrersesersesesseseseressesseees 100
Graphical User Interfaces With TKccccceovvrinnniesncnssnesesscseneniens 101
Tkinter—Python interface t0 TCH/TKccovvvevrnncrcnnnese e eseens 101
Hk—TKk-themed WIgets........ccourrrrirrecrerr e 101
turtle—Turtle graphics for TK.......couceereesnienrersere e e snnnens 101
Development TOOISccccvvrrerrrcerrr e 101
pydoc—Documentation generator and online help system..........ccccocooeeceerrnnnenee 101
unittest—Unit testing framework...........cccov s 101
2to3—Automated Python 2 to Python 3 code translation...............cccovrecenceneee. 101
Debugging and Profiling..........cccvvrrrvernnrnnnssser s 101
pdb—The Python Debugger ... 102
hotshot—High performance logging profilercccoevverrerrcerrreresreree e 102
timeit—Measure execution time of small code Snippets.......ccccvcvvererrerrierenens 102
trace—Trace or track Python statement eXecution..............coceveereereererreseseeseenenne 102
Python Runtime ServiCescccorrricrnnrcsn e 102
sys—System-specific parameters and functionsccocevvevevrnercnrnncesesennns 102
warnings—Warning CONtrolccouceervernnnsssne s e 102

xvii

CONTENTS

Custom Python INterpreterscooeeececececececee e 102
(070 L= 0 RPN 102
code—Interpreter base ClASSESccovvvververrerr s 103

IMPOrting LiDrarys.......ccoccovceennnenscsssssesssese s sse s ssssessens 103
zipimport—Import librarys from Zip arChives..........coceceecernesesessssesesessssesesenenns 103
runpy—Locating and executing Python [iDrarysccoeeeeevnnenesenesssesesensnsenes 103

Python Language ServiCeS.........cuummrrrrerrersessessessessesssssssssssasssssssssses 103
Parser—Access Python Parse trees........ovvevevennsess s sssses e 103
tabnanny—Detection of ambiguous indentation............ccevvnnnnnnnnnnnnenen 103

MS Windows Specific SErviCesccrvnrrrrrsrsersessesses s ses s s sessennas 103
msilib—Read and write Microsoft installer files.........c.c.covvnrnnnnnnnnnscs 103
_Winreg—Windows registry aCCESScccuurerererrerererrsese s sessseeens 103
winsound—Sound playing interface for Windowscccooooeeeerncncnennescscnennns 104

UNiX SPECIfiC SEIVICES.....coivrererrrreererre e se e 104
posix—The most common POSIX system CallS..........cccovrrerererrneneseresssesesensnsens 104
pwd—The password databasec.ccoeererrererserenserssesesese s sesse s ssssessssenses 104
tty -Terminal control fUNCLIONScoeeeerrrrrcserrrre e 104

= T 0 104
MacOs—Access to Mac 0S interpreter fetures........ocvvvverrerercevnrersrerenereenenens 104
Easy Dialogs—Basic Macintosh dialogsccccvvvvrnrnnnnnnnss e 104

MacPython OSA LiDrarys.........cccceerrrsersessesssssssssssessessssssssessesssssssssnens 104
aetools—OSA Client SUPPOM.........cc e 105
Aepack—Conversion between Python variables and AppleEvent
data CONAINEIS........ccociriccs s 105

SGI IRIX SPeCific SEIVICESccevvrverrrrrerrerrirrer e 105
gl—Graphics library interface.........cocuveeeerernesesesnssesesesse s sessssenes 105
al—Audio functions on the SGI ... 105

SUNOS SPECITIC SEIVICESvvvrrrrrrrrrrrrerrer s 105
sunaudiodev—Access to Sun audio hardware..........c.covnnnnsns: 105

xviii

CONTENTS

Chapter 10: ClasSeS.....cccuruusssmmmrsssssnnsssssssnnnssssssnnsssssssnnssssssnnsnsssss 107
What is an 0bJECE?........ccocvvrvrrrrr s 107
Creating @ Classcccceeerererrererre e e e sse e sse s snesnssnssnesnesnesnsnnenas 107
An Actual EXample.........ccoceeirnerinsesisse e s e sne s 108
The functions Within OUr ClaSSc.covrrrerrnnnrr s 109
Using the d0g ODJECT.........cccceerereecrrr e 110
GOING FUMNEE ... 111
Something Real.........ccccvvrvrvervrrrrr s 112
Reviewing the INformationccoeeveveresrierrre s neeees 112
DI)] 1 113
TIME 10 COUE . . . v ——————— 114
1T 119

Xix

About the Author

Gregory Walters has been developing software
solutions since 1972, back in the days before personal
computers. Since then, he has written software in
Visual Basic, Python, Cobol, Fortran, Modula-2,
Modula-3, C, Pascal, VB.NET, and, most recently, in
Basic4Android. He is currently working as an author
writing monthly articles on Python programming for
Full Circle magazine and as a consultant in Aurora,
Colorado. In his spare time, he enjoys spending time
with his wife, children, grandson, and dogs hiking,
cooking, and playing music.

xxi

About the Technical
Reviewer

Michael Winiberg received a B.Sc. in Colour
Chemistry from Leeds, and he has been a developer
all of his working life. He has written for ICL1900
series mainframes, Elliot “mini” computers and KDF9,
through 780, Motorola 68K, and Inmos Transputer to
the current range of Intel x86 CPUsFrom implementing
operating systems in assembler, a payroll written in
Algol-60, or working on a precursor to GPS through to
a multiuser WAN based travel reservation system in
C++ with an AJAX/Java web front-end, he has had an
incredibly interesting and varied career. He is currently
working on Python and SQL Server projects. He has
built multisite heterogenous networks, with monitoring and backup based on Linux, and
IP telephony call-centers. He also has a keen interest in desktop and ebook publishing
and technical writing.

He has been a senior manager and project leader, following a career as a consultant.
He has long-term links to the financial industry, and recently maintained and developed
for a trading floor in the City of London. His two current projects are in SQL Server/
Windows Server, and Linux/Python.

His other interests include sailing, reading, walking, and playing the pipe organ. His
son has just completed his Ph.D. in chemistry at Leeds. And his cat just loves chasing the
mouse pointer across the screen, scattering everything off the desk. . .

xxiii

Acknowledgments

First, I have to thank my wonderful wife for believing in me and for supporting me each
and every day when I'm frustrated and banging my head on the keyboard at 3 am or in
the late nights.

Second, I want to thank Ronnie Tucker at Full Circle magazine. Ronnie took a chance
on me years ago as a fledgling author, allowing me to get started in this industry and to
hone my skills on the wonderful readers of Full Circle. Thanks to you all!

Next, I want to thank the folks at Apress, with whom I've been working on this book
on a daily basis: James Markham, Jill Balzano, Michael Winiberg, and Jonathan Hassell.
Without their help, I would be floundering in a sea of words that make no sense. Thanks
go out to all of the others who have worked and helped on this book.

Finally, I'd like to thank my children Douglas, Kirsti, and Andrew, my grandson
Trey, friends, and church family (not mutually exclusive by the way) for all their longtime
kindness, love, and support.

XXV

	Contents at a Glance
	Contents
	About the Author
	About the Technical
Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Hello Python

	Python’s Interactive Shell
	Commands
	Multiline Statements

	The Code
	Decoding the Code
	Comments

	Chapter 2: Variables
	Case Sensitivity
	Proper Variable Naming
	Assignment
	Data Types
	Numeric
	String
	List
	Tuple
	Dictionary

	Data Type Conversion
	int(s,[base])
	long(s,[base])
	float(s)
	complex(real [,imaginary])
	str(x)
	tuple(s)
	list(s)
	set(l)
	dict(s) (s must be sequence of (key,value) tuples)
	frozenset(s)
	chr(x)
	unichr(x)
	ord(c)
	hex(x)
	oct(x)

	Chapter 3: Operators
	Arithmetic Operators
	+ Addition
	− Subtraction
	* Multiplication
	/ Division
	% Modulus
	** Exponent
	// Floor Division

	Comparison Operators
	==
	== (Strings)
	!=
	<>
	>
	<
	>=
	<=

	Assignment Operators
	=
	+=
	−=
	*=
	/=
	%=
	**=
	//=

	Logical Operators
	and
	or
	not

	Membership and Identity Operators
	In
	not in
	is
	is not

	Bitwise Operators
	&
	|
	^
	~
	<<
	>>

	Precedence of Operators

	Chapter 4: Strings
	Appending to Srings
	String Functions
	len()
	min()
	max()
	s1 in s2
	s1 not in s2
	s1 + s2
	s[x]
	s[x1:x2]
	s[x1:x2:x3]

	String Methods
	str.capitalize()
	str.center(width[,fillchar])
	str.count(sub[,start[,end]])
	str.decode([encoding[,errors]])
	str.encode([encoding[,errors]])
	str.endswith(suffix[,start[,end]])
	str.expandtabs([tabsize])
	str.find(substring[,start[,end]])
	str.format(*args,**kwargs)
	str.format_map(mapping) Python 3.x only
	str.index(substring[,start[,end]])
	str.isalnum()
	str.isalpha()
	str.isdecimal() Python 3.x only
	str.isdigit()
	str.isidentifier() Python 3.x only
	str.islower()
	str.isprintable() Python 3.x only
	str.isspace()
	str.istitle()
	str.isupper()
	str.join(iterable)
	str.ljust(width[,fillchar])
	str.lower()
	str.lstrip([chars])
	str.maketrans(x[,y]]) Python 3.x only
	str.partition(sep)
	str.replace(old,new[,count])
	str.rfind(sub[,start[,end]])
	str.rindex(sub[,start[,end]])
	str.rjust(width[,fillchar])
	str.rpartition(sep)
	str.rsplit([sep[,maxsplit]])
	str.rstrip([chars])
	str.split([sep[,maxsplit]])
	str.splitlines ([keepends])
	str.startswith(prefix[,start[,end]])
	str.strip ([chars])
	str.swapcase()
	str.title()
	str.translate(table[,deletechars]) Python 2.x
	str.translate(table) Python 3.x
	str.upper()
	str.zfill(width)

	Print Statement
	Python 2.x String Formatting
	Python 3.x String Formatting

	Chapter 5: Conditional Statements
	IF / ELIF / ELSE Statements
	For
	Break
	Continue
	Else
	Pass
	While

	Chapter 6: Data Structures
	Data Structure Example
	Digging Deeper
	Lists
	List Functions
	len(L)
	min(L)
	max(L) function
	x in L
	x not in L
	L1 + L2
	L[x]
	L[x1:x2]
	del(L[x])

	List Methods
	.append(x)
	.extend(L)
	.insert(i,x)
	.remove(x)
	.pop([i])
	.index(x)
	.count(x)
	.sort( )
	.reverse( )

	Dictionaries
	Dictionary Functions
	len(dictionary)
	dict(list)

	Dictionary Methods
	.clear( )
	.copy( )
	.get(key[,default])
	.has_key(key)
	.items()
	.keys()
	.pop(key[,default])
	.setdefault(key[,default])
	.update(other)
	.values()

	Tuples
	Sets
	Set Functions
	len(set)
	min(set)
	max(set)

	Set Methods
	.clear()
	.copy()
	.pop()
	.add(item)
	.remove(item)
	.discard(item)
	.update(set) or alternately x|=y
	.intersection_update(set) or alternately x&=y
	.difference_update(set) or alternately x-=y
	.symmetric_difference_update(set) or alternately x^=y
	.issubset(set) or alternately x<=y
	.issuperset(set) or alternately x>=y
	.union(set) or alternately x|y
	.intersection(set) or alternately x&y
	.difference(set) or alternately x-y
	.symmetric_difference(set) or alternately x^y

	Frozensets

	Chapter 7: Keywords
	List of Python Keywords
	Keywords Explained
	and
	Boolean Evaluation

	as
	Libraries, Modules

	assert
	Debugging

	break
	Loops

	class
	Misc.

	continue
	Conditional Statements, Loops

	def
	Functions

	del
	Misc

	elif
	Conditional Statements

	else
	Conditional Statements

	except
	Error Handling

	exec
	Misc.

	finally
	Error Handling

	for
	Loops

	from
	Libraries

	global
	Variables

	if
	Conditional Statements

	import
	Libraries

	in
	Evaluation, Loops

	is
	Boolean Evaluation

	lambda
	Functions

	not
	Boolean Evaluation

	or
	Boolean Evaluation

	pass
	Conditional Statements, Loops

	print
	Output, Debugging

	raise
	Error Handling

	return
	Functions

	try
	Error Handling

	while
	Loops

	with
	Unmanaged resources

	yield
	Iterators, Generators

	False
	Evaluation (Version 3.x only)

	None
	Evaluation, Variables (Version 3.x only)

	True
	Evaluation (Version 3.x only)

	nonlocal
	Variables (Version 3.x only)

	Escape Sequences

	Chapter 8: Functions
	Structure of a Function
	Returning values
	Optional Parameters
	Variables in and out of Functions
	Example 1
	Output

	Example 2
	Using Global Keyword
	Output
	Return a Value
	Output

	Anatomy of a Python Program
	Structure of a simple program
	A real example

	Chapter 9: Libraries
	String Services
	string—Common string operations
	re—Regular expression operations
	StringIO—Read and write strings as files

	Data Types
	datetime—Basic date and time types
	sets—Extends the set capabilities of Python
	pprint—Data pretty printer

	Numeric and Mathematical Librarys
	numbers—Numeric abstract base cass
	decimal—Decimal fixed point and floating point arithmetic
	math—Mathematical functions
	random—Generate pseudo-random numbers

	File and Directory Access
	os.path—Common pathname manipulations
	fileinput—iterate over lines from input streams

	Data Persistance
	pickle—Python object serialization
	anydbm—Generic access to DBM-style databases
	sqlite3—API interface for SQLite databases

	Data Compression and Archiving
	zlib—Compression compatible with gzip
	gzip—Support for gzip files
	bz2—Compression compatible with bzip2
	zipfile—Work with ZIP archives

	File Formats
	csv—CSV File Reading and Writing
	ConfigParser—Configuration file Parser

	Cryptographic Services
	hashlib—Secure hashes and message digest algorithm
	md5—MD5 message digest algorithm
	sha—SHA-1 message digest algorithm

	Generic Operating System Services
	os—Miscellaneous operating system interfaces.
	io—Core tools for working with streams
	time—Time access and conversions
	argparse—Parser for commandline options, arguments, and subcommands
	curses—Terminal handling for character displays
	logging—Logging library for Python

	Optional Operating system Services
	threading
	Multiprocessing—Process-based “threading” interface
	readline—GNU readline interface

	Interprocess Communication and Networking
	socket—Low-level networking interface
	ssl—TLS/SSL wrapper for socket objects
	popen2—Subprocesses with accessible I/O streams

	Internet Data Handling
	email—An e-mail and MIME handling package
	json—lightweight data interchange format based on a subset of JavaScript
	uu—Encode and decode uuencoded files

	Structured Markup Processing Tools
	HTMLParser—Simple HTML and XHTML parser
	htmllib—Parser for HTML documents
	xml.etree.elementtree—ElementTree XML API
	xml.dom—The Document Object Module API
	xml.sax—Support for SAX2 parsers

	Internet Protocols and support
	webbrowser—Convienient Web-browser controller
	cgi—Common Gateway Interface support
	urllib—Open arbitrary resources by URL
	urllib2—extensible library for opening URSs
	poplib—POP3 protocol client

	Multimedia Services
	audioop—Manipulate raw audio data
	wave—Read and write WAV files

	Internationalization
	gettext—Multilngual internationalization services
	locale—Internationalization services

	Program Frameworks
	Cmd—Support for line-oriented command interpreters
	shlex—Simple lexical analysis

	Graphical User Interfaces with Tk
	Tkinter—Python interface to Tcl/Tk
	ttk—Tk-themed widgets
	turtle—Turtle graphics for Tk

	Development Tools
	pydoc—Documentation generator and online help system
	unittest —Unit testing framework
	2to3—Automated Python 2 to Python 3 code translation

	Debugging and Profiling
	pdb—The Python Debugger
	hotshot—High performance logging profiler
	timeit—Measure execution time of small code snippets
	trace—Trace or track Python statement execution

	Python Runtime Services
	sys—System-specific parameters and functions
	warnings—Warning control

	Custom Python Interpreters
	codeop
	code—Interpreter base classes

	Importing Librarys
	zipimport —Import librarys from Zip archives
	runpy —Locating and executing Python librarys

	Python Language Services
	Parser—Access Python parse trees
	tabnanny—Detection of ambiguous indentation.

	MS Windows Specific Services
	msilib —Read and write Microsoft installer files
	_winreg —Windows registry access
	winsound —Sound playing interface for Windows

	Unix Specific Services
	posix—The most common POSIX system calls
	pwd—The password database
	tty -Terminal control functions

	Mac OS X
	MacOs—Access to Mac OS interpreter fetures
	Easy Dialogs—Basic Macintosh dialogs

	MacPython OSA Librarys
	aetools —OSA Client support
	Aepack —Conversion between Python variables and AppleEvent data containers

	SGI IRIX Specific Services
	gl—Graphics library interface
	al—Audio functions on the SGI

	SunOS Specific Services
	sunaudiodev—Access to Sun audio hardware

	Chapter 10: Classes
	What is an object ?
	Creating a Class
	An Actual Example
	The functions within our class
	Using the dog object
	Going Further

	Something Real
	Reviewing the Information
	XML Refresher
	Time to Code . . .
	Import the Libraries
	Create the Class
	Connect to the Website
	The getCurrents function
	The Output Function
	The Main Function
	Add the Program Entry Point

	Index

